• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

DENG Zhixu, FU Yuanchen, LI Xin. LEO enhanced Beidou PPP-RTK positioning method and experimental analysis[J]. GNSS World of China, 2023, 48(1): 57-63. DOI: 10.12265/j.gnss.2023008
Citation: DENG Zhixu, FU Yuanchen, LI Xin. LEO enhanced Beidou PPP-RTK positioning method and experimental analysis[J]. GNSS World of China, 2023, 48(1): 57-63. DOI: 10.12265/j.gnss.2023008

LEO enhanced Beidou PPP-RTK positioning method and experimental analysis

More Information
  • Received Date: January 17, 2023
  • Available Online: February 14, 2023
  • Low earth orbit (LEO) constellation has the advantages of large number of satellites and rapid change of geometric configuration, which is conducive to the rapid convergence of ambiguity parameters in precise single point positioning (PPP). However, it is difficult to achieve rapid convergence of ambiguity in several seconds or even instantaneous because of the influence of atmospheric delay. In this contribution, a LEO constellation enhanced PPP-RTK method is proposed, which makes full use of the high-precision atmospheric information and ambiguity resolution (AR) method to further improve the positioning performance of Beidou. A polar orbit constellation containing 192 LEO satellites was designed, and the observations of 22 ground stations were simulated. After estimating the UPD and precision atmospheric delay correction, the positioning performance of LEO enhanced PPP, PPP-AR and PPP-RTK are evaluated respectively. The results show that under the enhancement of LEO constellation, the number of visible satellites increases by 4~6, and the average PPP initialization time of 22 stations is shortened from 552.1 s to 102 s, with the improvement of 81.52%. After the ambiguity resolution, the initialization time is further shortened to less than 1 minute. With the regional network augmentation, the LEO enhanced PPP-RTK can achieve a positioning accuracy of centimeter degree, and the positioning accuracy can be improved by 98.5% compared with PPP. Even when the ground reference network is expanded to 500 km, the LEO enhanced PPP-RTK can still achieve rapid convergence of about 10 seconds.
  • [1]
    ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of geophysical research atmospheres, 1997, 102(B3): 5005-5017. DOI: 10.1029/96JB03860
    [2]
    KOUBA J, HEROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883
    [3]
    马福建. 低轨星座增强GNSS精密定位关键技术研究[D]. 武汉: 武汉大学, 2018.
    [4]
    张小红,胡家欢,任晓东. PPP/PPP-RTK 新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100.
    [5]
    GE H, LI B F, GE M R, et al. Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)[J]. Remote sensing, 2018, 10(7): 984. DOI: 10.3390/rs10070984
    [6]
    KE M X, LV J, CHANG J, et al. Integrating GPS and LEO to accelerate convergence time of precise point positioning[C]// 2015 International Conference on Wireless Communications & Signal Processing (WCSP), 2015. DOI: 10.1109/WCSP.2015.7341230
    [7]
    李昕. 多频率多星座GNSS快速精密定位关键技术研究[D]. 武汉: 武汉大学.
    [8]
    彭文杰. 基于稀疏网的PPP-RTK理论与应用[D]. 武汉: 武汉大学, 2017.
    [9]
    WABBENA G, SCHMITZ M, BAGGE A. PPP-RTK: precise point positioning using state-space representation in RTK networks[C]//Proceedings of the 18th international technical meeting of the satellite division of the institute of navigation, 2005: 2584-2594.
    [10]
    TEUNISSEN P J G, ODIJK D, ZHANG B. PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution[J]. Journal of aeronautics, astronautics and aviation, seriesA, 2010, 42(4): 223-230.
    [11]
    LI X X, ZHANG X H, GE M R. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution[J]. Journal of geodesy, 2010, 85(3): 151-158. DOI: 10.1007/s00190-010-0424-0
    [12]
    李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013.
    [13]
    OLIVRIRA P S, MOREL L, FUND F, et al. Modeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK[J]. GPS solutions, 2017, 21(1): 237-250. DOI: 10.1007/s10291-016-0518-0
    [14]
    ZHANG B C, CHEN Y C, YUAN Y B. PPP-RTK based on undifferenced and uncombined observations: theoretical and practical aspects[J]. Journal of geodesy, 2019(93): 1011-1024. DOI: 10.1007/s00190-018-1220-5
    [15]
    LI X X, HUANG J X, LI X, et al. Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation[J]. GPS solutions, 2021, 25,(3): 107. DOI: 10.1007/s10291-021-01123-0
    [16]
    LI X X, WANG B, Li X, et al. Principle and performance of multi-frequency and multi-GNSS PPP-RTK[J]. Satellite navigation, 2022, 3(1): 128-138.
    [17]
    LI X X, HAN X J, LI X, et al. GREAT-UPD: an open-source software for uncalibrated phase delay estimation based on multi-GNSS and multi-frequency observations[J]. GPS solutions, 2021, 25(2): 1. DOI: 10.1007/s10291-020-01070-2
    [18]
    ZHANG X H, REN X D, CHEN J, et al. Investigating GNSS PPP-RTK with external ionospheric constraints[J]. Satellite navigation, 2022, 3(1). DOI: 10.1186/s43020-022-00067-1
  • Cited by

    Periodical cited type(4)

    1. 蒋世俊,李星星,付元辰,李岩,张逸凡,马悦. 城市复杂环境低轨增强BDS精密定位方法. 导航定位学报. 2025(02): 49-56 .
    2. 李敏,黄腾达,李文文,赵齐乐. 低轨导航增强技术发展综述. 测绘地理信息. 2024(01): 10-19 .
    3. 白天阳,张春光,陈向东,王冬华,冷宏宇. 基于北斗的PPP-RTK技术在无人机电力巡检中的应用分析. 全球定位系统. 2024(01): 45-53+101 . 本站查看
    4. 余海锋,周长江,王林伟,岳彩亚. 不同截止高度角的BDS-2/BDS-3融合PPP定位性能分析. 北京测绘. 2023(12): 1707-1714 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (762) PDF downloads (134) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return