GNSS World of China

Volume 48 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
JING Xin, LI Jianwen, ZHOU Shuhan, CAI Wei, KE Neng. Precision analysis of BDS-3 multi-frequency undifferenced and uncombined precision orbit determination[J]. GNSS World of China, 2023, 48(2): 101-110. doi: 10.12265/j.gnss.2022219
Citation: JING Xin, LI Jianwen, ZHOU Shuhan, CAI Wei, KE Neng. Precision analysis of BDS-3 multi-frequency undifferenced and uncombined precision orbit determination[J]. GNSS World of China, 2023, 48(2): 101-110. doi: 10.12265/j.gnss.2022219

Precision analysis of BDS-3 multi-frequency undifferenced and uncombined precision orbit determination

doi: 10.12265/j.gnss.2022219
  • Received Date: 2022-11-28
    Available Online: 2023-05-19
  • In view of the observation data of BDS-3 at 5 frequencies and the theory of un-differenced and un-combined (UDUC) precise orbit determination, this paper introduces the UDUC model and parameter estimation method, proposes the strategy of station selection using the K-means algorithm, and analyzes the advantages of UDUC method. Through two kinds of station selection schemes, manual experience selection and K-means, 3 frequency selection methods of BDS-3 5-frequency, B1C+B2a, B1I+B3I are used respectively, and 30 IGS observation stations are used to carry out precise orbit determination for BDS-3 MEO and IGSO satellites. The experimental results show that when the stations which can receive B1C+B2a frequency observation data are insufficient, the UDUC method can increase the number of observation data and optimize the station layout by using the 5-frequency observation data so that the orbit determination accuracy can be improved. Compared with B1C+B2a, the monthly average RMS of 5-frequency in A, C and R directions increase by 0.003 m, 0.004 m, 0.003 m respectively, and that of 3D RMS increases by about 0.007 m. The stations selected through the K-means algorithm are more reasonably distributed and have higher orbit determination accuracy than manual experience selection scheme. With the 3 frequency selection methods, the monthly average RMS of MEO satellites in A, C and R directions are improved by 0.009 m, 0.017 m, 0.009 m respectively.

     

  • loading
  • [1]
    李星星, 张伟, 袁勇强, 等. GNSS卫星精密定轨综述: 现状, 挑战与机遇[J]. 测绘学报, 2022, 51(7): 1271-1293. DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207018
    [2]
    辜声峰. 多频GNSS非差非组合精密数据处理理论及其应用[D]. 武汉: 武汉大学, 2013.
    [3]
    周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[D]. 上海华东师范大学, 2018.
    [4]
    景鑫, 车通宇, 周舒涵, 等. 北斗三号系统开通前后广播星历精度对比分析[J]. 全球定位系统, 2022, 47(4): 23-30. DOI: 10.12265/j.gnss.2022051
    [5]
    张小红, 柳根, 郭斐, 等. 北斗三频精密单点定位模型比较及定位性能分析[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2124-2130.
    [6]
    ZEHENTNER N, MAYER-GURR T. Precise orbit determination based on raw GPS measurements[J]. Journal of geodesy, 2015, 90(3): 275-286. DOI: 10.1007/s00190-015-0872-7
    [7]
    STRASSER S, MAYER-GURR T, ZEHENTNER N. Processing of GNSS constellations and ground station networks using the raw observation approach[J]. Journal of Geodesy, 2018, 93(8): 1045-1057. DOI: 10.1007/s00190-018-1223-2
    [8]
    曾添, 隋立芬, 阮仁桂, 等. 三频非组合模型的GPS/BDS/Galileo精密定轨[J]. 测绘学报, 2021, 50(2): 169-180.
    [9]
    彭欢欢, 石教坤, 蔡鑫. 基于单通道的Kmeans算法的图像分割[J]. 信息技术与信息化, 2022(1): 39-42. DOI: 10.3969/j.issn.1672-9528.2022.01.011
    [10]
    彭海驹, 严科文, 林松, 等. 融合kmeans聚类与Hausdorff距离的点云精简算法改进[J]. 地理空间信息, 2022, 20(8): 59-63. DOI: 10.3969/j.issn.1672-4623.2022.08.014
    [11]
    HOFMANN-WELLENHOF B, LICHTENEGGER H, WASLE E. GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more[M]. Wien; New York: Springer, 2007.
    [12]
    PETIT G, LUZUM B. IERS Conventions(2010), IERS Technical Note 36[R].
    [13]
    谢劭峰, 潘清莹, 黄良珂, 等. 中国区域ZTD, ZWD高程缩放因子的时空特性分析[J]. 大地测量与地球动力学, 2021, 41(12): 1211-1215.
    [14]
    章迪. GNSS对流层天顶延迟模型及映射函数研究[D]. 武汉: 武汉大学, 2017.
    [15]
    李涌涛, 李建文, 庞鹏, 等. 2017年9月磁暴期间电离层TEC变化分析[J]. 全球定位系统, 2018, 43(4): 42-47.
    [16]
    李涌涛, 李建文, 顾晨钟, 等. Linux Shell在电离层TEC格网数据提取和分析中的应用[J]. 全球定位系统, 2019, 44(3): 81-87.
    [17]
    HOQUE M M, JAKOWSKI N. Estimate of higher order ionospheric errors in GNSS positioning[J]. Radio science, 2008, 43(5): 1-15. DOI: 10.1029/2007RS003817
    [18]
    TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation[J]. Journal of geodesy, 1995, (70): 65-82. DOI: 10.1007/BF00863419
    [19]
    CHANG X-W, YANG X, ZHOU T. MLAMBDA: a modified LAMBDA method for integer least-squares estimation[J]. Journal of geodesy, 2005, 79(9): 552-565. DOI: 10.1007/s00190-005-0004-x
    [20]
    CARRERE L, LYARD F, CANCET M, et al. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region[A]. Egu General Assembly Conference[C]. 2015.
    [21]
    DOBSLAW H, BERGMANN-WOLF I, DILL R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06[J]. Geophysical journal international, 2017, 211(1): 263-269. DOI: 10.1093/gji/ggx302
    [22]
    张龙平, 党亚民, 成英燕, 等. 北斗GEO/IGSO/MEO卫星定轨地面站构型影响分析及其优化[J]. 测绘学报, 2016, 45(S2): 82-92.
    [23]
    李星星, 黄健德, 袁勇强, 等. Galileo三频非组合精密定轨模型及精度评估[J]. 测绘学报, 2020, 49(9): 1120-1130. DOI: 10.11947/j.AGCS.2020.20200320
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (265) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return