GNSS World of China
Citation: | YANG Yuncheng, WU Fei, ZHU Hai, ZHU Runzhe, YANG Mingze. Adaptive step detection method combining CNN-BiLSTM-SA motion pattern recognition[J]. GNSS World of China, 2023, 48(2): 71-80. doi: 10.12265/j.gnss.2022167 |
[1] |
HE X F, JIN R C, DAI H Y. Leveraging spatial diversity for privacy-aware location-based services in mobile networks[J]. IEEE transactions on information forensics and security, 2018, 13(6): 1524-1534. DOI: 10.1109/TIFS.2018.2797023
|
[2] |
ZHAO Y C, XU J, WU J, et al. Enhancing camera-based multimodal indoor localization with device-free movement measurement using Wi-Fi[J]. IEEE internet of things journal, 2019, 7(2): 1024-1038. DOI: 10.1109/JIOT.2019.2948605
|
[3] |
HOANG M T, YUEN B, DONG X D, et al. Recurrent neural networks for accurate RSSI indoor localization[J]. IEEE internet of things journal, 2019, 6(6): 10639-10651. DOI: 10.1109/JIOT.2019.2940368
|
[4] |
刘公绪, 史凌峰. 室内导航与定位技术发展综述[J]. 导航定位学报, 2018, 6(2): 7-14. DOI: 10.16547/j.cnki.10-1096.20180202
|
[5] |
POULOSE A, HAN D S. UWB indoor localization using deep learning LSTM networks[J]. Applied sciences, 2020, 10(18): 6290. DOI: 10.3390/app10186290
|
[6] |
杨狄, 唐小妹, 李柏渝, 等. 基于超宽带的室内定位技术研究综述[J]. 全球定位系统, 2015, 40(5): 34-40. DOI: 10.13442/j.gnss.1008-9268.2015.05.007
|
[7] |
WU Y, ZHU H B, DU Q X, et al. A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[J]. International journal of automation and computing, 2019, 16(1): 65-83. DOI: 10.1007/s11633-018-1150-y
|
[8] |
QIAN J, MA J B, YING R, et al. An improved indoor localization method using smartphone inertial sensors[C]//International Conference on Indoor Positioning and Indoor Navigation, IEEE, 2013: 1-7. DOI: 10.1109/IPIN.2013.6817854
|
[9] |
TIAN Q L, SALCIC Z, KEVIN I, et al. A multi-mode dead reckoning system for pedestrian tracking using smartphones[J]. IEEE sensors journal, 2015, 16(7): 2079-2093. DOI: 10.1109/JSEN.2015.2510364
|
[10] |
YANG R, WANG B W. PACP: a position-independent activity recognition method using smartphone sensors[J]. Information, 2016, 7(4): 72. DOI: 10.3390/info7040072
|
[11] |
CHEN K X, YAO L N, ZHANG D L, et al. A semisupervised recurrent convolutional attention model for human activity recognition[J]. IEEE transactions on neural networks and learning systems, 2019, 31(5): 1747-1756. DOI: 10.1109/TNNLS.2019.2927224
|
[12] |
WANG Q, LUO H Y, XIONG H, et al. Pedestrian dead reckoning based on walking pattern recognition and online magnetic fingerprint trajectory calibration[J]. IEEE internet of things journal, 2020, 8(3): 2011-2026. DOI: 10.1109/JIOT.2020.3016146
|
[13] |
PHAM V T, NGUYEN D A, DANG N D, et al. Highly accurate step counting at various walking states using low-cost inertial measurement unit support indoor positioning system[J]. Sensors, 2018, 18(10): 3186. DOI: 10.3390/s18103186
|
[14] |
郭丞, 吴飞, 朱海. 多场景下的行人步频自适应检测方法[J]. 全球定位系统, 2021, 46(6): 98-106. DOI: 10.12265/j.gnss.2021062101
|
[15] |
AHOLA T M. Pedometer for running activity using accelerometer sensors on the wrist[J]. Medical equipment insights, 2010(3): 1. DOI: 10.4137/MEI.S3748
|
[16] |
TUMKUR K, SUBBIAH S. Modeling human walking for step detection and stride determination by 3-axis accelerometer readings in pedometer[C]//The 4th International Conference on Computational Intelligence, Modelling and Simulation, 2012: 199-204. DOI: 10.1109/CIMSim.2012.65
|
[17] |
陈国良, 李飞, 张言哲. 一种基于自适应波峰检测的MEMS计步算法[J]. 中国惯性技术学报, 2016, 23(3): 315-321. DOI: 10.13695/j.cnki.12-1222/o3.2015.03.007
|
[18] |
WANG B Y, LIU X L, YU B G, et al. Pedestrian dead reckoning based on motion mode recognition using a smartphone[J]. Sensors, 2018, 18(6): 1811. DOI: 10.3390/s18061811
|
[19] |
LEE S, KIM B, KIM H, et al. Inertial sensor-based indoor pedestrian localization with minimum 802.15. 4a configuration[J]. IEEE transactions on industrial informatics, 2011, 7(3): 455-466. DOI: 10.1109/TII.2011.2158832
|
[20] |
ZHANG H M, YUAN W, SHEN Q, et al. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition[J]. IEEE sensors journal, 2014, 15(3): 1421-1429. DOI: 10.1109/JSEN.2014.2363157
|
[21] |
崔家梁, 冯朝晖, 李芹, 等. 基于CNN和RNN的像素级视频目标跟踪算法[J]. 全球定位系统, 2019, 44(3): 1-6. DOI: 10.13442/j.gnss.1008-9268.2019.03.001
|
[22] |
陈晓雷, 孙永峰, 李策, 等. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 296-309. DOI: 10.13229/j.cnki.jdxbgxb20211031
|
[23] |
GU F, KHOSHELHAM K, VALAEE S, et al. Locomotion activity recognition using stacked denoising autoencoders[J]. IEEE internet of things journal, 2018, 5(3): 2085-2093. DOI: 10.1109/JIOT.2018.2823084
|
[24] |
WANG Q, YE L, LUO H Y, et al. Pedestrian walking distance estimation based on smartphone mode recognition[J]. Remote sensing, 2019, 11(9): 1140. DOI: 10.3390/rs11091140
|
[25] |
CHENG Y W, HU K, WU J, et al. A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings[J]. Advanced engineering informatics, 2021(48): 101247. DOI: 10.1016/J.AEI.2021.101247
|
[26] |
WANG X, CHEN G L, CAO X, et al. Robust and accurate step counting based on motion mode recognition for pedestrian indoor positioning using a smartphone[J]. IEEE sensors journal, 2021, 22(6): 4893-4907. DOI: 10.1109/JSEN.2021.3058127
|
[27] |
RUSIECKI A. Trimmed categorical cross‐entropy for deep learning with label noise[J]. Electronics letters, 2019, 55(6): 319-320. DOI: 10.1049/EL.2018.7980
|