GNSS World of China
Citation: | GAO Yi, WANG Qing, YANG Gaochao, LIU Pengfei. Indoor dynamic SLAM based on geometric constraints and target detection[J]. GNSS World of China, 2022, 47(5): 51-56. doi: 10.12265/j.gnss.2022099 |
[1] |
CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[J]. IEEE transactions on robotics, 2016, 32(6): 1309-1332. DOI: 10.1109/TRO.2016.2624754
|
[2] |
JIA Y J, YAN X Y, XU Y H. A survey of simultaneous localization and mapping for robot[C]// IEEE Advanced Information Technology, Electronic and Automation Control Conference, 2019.
|
[3] |
FORSTER C, ZHANG Z C, GASSNER M, et al. SVO: semidirect visual odometry for monocular and multicamera systems[J]. IEEE transactions on robotics, 2016, 33(2): 249-265. DOI: 10.1109/TRO.2016.2623335
|
[4] |
ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(3): 611-625. DOI: 10.1109/TPAMI.2017.2658577
|
[5] |
MUR-ARTAL R, TARDÓS J D. Orb-slam2: an open-source slam system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255-1262. DOI: 10.1109/TRO.2017.2705103
|
[6] |
CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap SLAM[J]. IEEE transactions on robotics, 2021, 37(6): 1874-1890. DOI: 10.1109/TRO.2021.3075644
|
[7] |
王柯赛, 姚锡凡, 黄宇, 等. 动态环境下的视觉SLAM研究评述[J]. 机器人, 2021, 43(6): 715-732. DOI: 10.13973/j.cnki.robot.200468
|
[8] |
高兴波, 史旭华, 葛群峰, 等. 面向动态物体场景的视觉SLAM综述[J]. 机器人, 2021, 43(6): 733-750. DOI: 10.13973/j.cnki.robot.200323
|
[9] |
SUN Y X, LIU M, MENG M Q H. Improving RGB-D SLAM in dynamic environments: a motion removal approach[J]. Robotics and autonomous systems, 2017(89): 110-122. DOI: 10.1016/j.robot.2016.11.012
|
[10] |
张慧娟, 方灶军, 杨桂林. 动态环境下基于线特征的RGB-D视觉里程计[J]. 机器人, 2019, 41(1): 75-82. DOI: 10.13973/j.cnki.robot.180020
|
[11] |
SHENG C, PAN S G, GAO W, et al. Dynamic-DSO: direct sparse odometry using objects semantic information for dynamic environments[J]. Applied sciences, 2020, 10(4): 1467. DOI: 10.3390/app10041467
|
[12] |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C] //The IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
[13] |
YU C, LIU Z X, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: 1168-1174. DOI:10.1109/IROS.2018.8593691
|
[14] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615
|
[15] |
YANG S Q, FAN G H, BAI L L, et al. SGC-VSLAM: a semantic and geometric constraints VSLAM for dynamic indoor environments[J]. Sensors, 2020, 20(8): 2432. DOI: 10.3390/s20082432
|
[16] |
REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv e-print, 2018. DOI: 10.48550/arXiv.1804.02767
|
[17] |
ZHONG F W, WANG S, ZHANG Z Q, et al. Detect-SLAM: making object detection and SLAM mutually beneficial[C]//IEEE Winter Conference on Applications of Computer Vision (WACV), 2018: 1001-1010. DOI: 10.1109/WACV.2018.00115
|
[18] |
DELMERICO J, SCARAMUZZA D. A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots[C]//IEEE International Conference on Robotics and Automation (ICRA), 2018: 2502-2509. DOI:10.1109/ICRA.2018.8460664
|