GNSS World of China

Volume 47 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
ZHAO Long, GUO Jiang, LI Guangcai, LUO Feng. Performance analysis of BDS/GNSS airborne kinematic PPP[J]. GNSS World of China, 2022, 47(5): 57-64. doi: 10.12265/j.gnss.2022096
Citation: ZHAO Long, GUO Jiang, LI Guangcai, LUO Feng. Performance analysis of BDS/GNSS airborne kinematic PPP[J]. GNSS World of China, 2022, 47(5): 57-64. doi: 10.12265/j.gnss.2022096

Performance analysis of BDS/GNSS airborne kinematic PPP

doi: 10.12265/j.gnss.2022096
  • Received Date: 2022-05-30
    Available Online: 2022-09-26
  • Based on the measured data in the airborne kinematic scene, this paper uses the open-source PRIDE PPP-AR software to construct a dual-frequency ionosphere-free combination (IF) using the pseudorange and carrier phase observations for kinematic precise point positioning (PPP) experiment, and it also compares the performance of a single BDS system and BDS/GNSS in airborne large kinematic positioning. The results show that the number of satellites, satellite geometry and position dilution of precision (PDOP) of the multi-system combination are superior. In a single system, the positioning accuracy in the plane (east (E), north (N) and up (U) )directions are improved by 10% and 12% respectively. In addition, this paper compares the solution results of the open-source software PRIDE PPP-AR with the commercial software WayPoint, the results show that the positioning accuracy of the former is improved by 46% and 36% in the E and U directions respectively, and the N direction is the most improved, nearly doubled. Therefore, PRIDE PPP-AR has higher solution accuracy and better solution performance.

     

  • loading
  • [1]
    宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8. DOI: 10.3969/j.issn.2095-4999.2013.01.002
    [2]
    季宇虹, 王让会. 全球导航定位系统GNSS的技术与应用[J]. 全球定位系统, 2010, 35(5): 69-75. DOI: 10.3969/j.issn.1008-9268.2010.05.016
    [3]
    刘基余. GNSS全球导航卫星系统的新发展[J]. 遥测遥控, 2007, 28(4): 1-6. DOI: 10.3969/j.issn.2095-1000.2007.04.001
    [4]
    耿江辉, 常华, 郭将, 等. 面向城市复杂环境的3种多频多系统GNSS单点高精度定位方法及性能分析[J]. 测绘学报, 2020, 49(1): 1-13.
    [5]
    张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10): 1399-1407. DOI: 10.11947/j.AGCS.2017.20170327
    [6]
    屈利忠, 赵齐乐, 郭靖, 等. GNSS融合动态精密单点定位性能分析[J]. 大地测量与地球动力学, 2016, 36(4): 298-302. DOI: 10.14075/j.jgg.2016.04.004
    [7]
    苗维凯, 陈旭升, 刘洋洋. GNSS多系统组合PPP解算方法与成果分析[J]. 大地测量与地球动力学, 2019, 39(5): 521-527. DOI: 10.14075/j.jgg.2019.05.016
    [8]
    任晓东, 张柯柯, 李星星, 等. BeiDou、Galileo、GLONASS、GPS多系统融合精密单点[J]. 测绘学报, 2015, 44(12): 1307-1313, 1339.
    [9]
    祝会忠, 杨添宇, 赵洪涛, 等. GNSS多系统精密单点定位方法与性能分析[J]. 测绘科学, 2020, 45(12): 1-7,21. DOI: 10.16251/j.cnki.1009-2307.2020.12.001
    [10]
    尹海博, 郭杭, 罗孝文. BDS/GNSS融合精密单点定位性能分析[J]. 全球定位系统, 2021, 46(3): 66-71. DOI: 10.12265/j.gnss.2020121501
    [11]
    高永刚, 吴观烨, 郭金运, 等. GNSS多系统组合动态精密单点定位性能研究[J]. 应用基础与工程科学学报, 2022, 30(2): 501-518. DOI: 10.16058/j.issn.1005-0930.2022.02.020
    [12]
    夏宇飞. INS辅助的多系统GNSS单频精密单点定位算法研究[D]. 上海: 华东师范大学, 2018.
    [13]
    杨添宇. GNSS精密单点定位算法研究及性能分析[D]. 阜新: 辽宁工程技术大学, 2021.
    [14]
    胡丽乐, 潘林. GPS/GLONASS/BDS/Galileo组合精密单点定位[J]. 导航定位学报, 2017, 5(1): 86-90. DOI: 10.16547/j.cnki.10-1096.20170118
    [15]
    丁赫, 孙付平, 李亚萍, 等. BDS/GPS/GLONASS组合精密单点定位模型及性能分析[J]. 大地测量与地球动力学, 2016, 36(4): 303-307. DOI: 10.14075/j.jgg.2016.04.005
    [16]
    李盼. GNSS 精密单点定位模糊度快速固定技术和方法研究[D]. 武汉: 武汉大学, 2016.
    [17]
    屈利忠. 北斗/GNSS实时精密定位服务系统关键算法研究与实现[D]. 武汉: 武汉大学, 2017.
    [18]
    SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin géodésique, 1972: 279-298.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (505) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return