GNSS World of China
Citation: | CHI Qin, ZHAO Xingwang, CHEN Jian. Short-term rainfall forecast by several typical machine learning algorithm[J]. GNSS World of China, 2022, 47(4): 122-128. doi: 10.12265/j.gnss.2022039 |
[1] |
HE Q, ZHANG K F, WU S Q, et al. Real-time GNSS-derived PWV for typhoon characterizations: a case study for super typhoon Mangkhut in Hong Kong[J]. Remote sensing, 2019, 12(1): 104. DOI: 10.3390/rs12010104
|
[2] |
FAYAZ S A, ZAMAN M, BUTT M A. Knowledge discovery in geographical sciences—a systematic survey of various machine learning algorithms for rainfall prediction[C]//International Conference on Innovative Computing and Communications, 2021: 593-608. DOI: 10.1007/978-981-16-2597-8_51
|
[3] |
王江波. 长短期记忆网络在短临降雨中的应用[D]. 南京: 南京信息工程大学, 2021.
|
[4] |
AHMED K, SACHINDRA D A, SHAHID S, et al. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms[J]. Atmospheric research, 2020(236): 104806. DOI: 10.1016/j.atmosres.2019.104806
|
[5] |
YANG M X, WANG H, JIANG Y Z, et al. GECA proposed ensemble–KNN method for improved monthly runoff forecasting[J]. Water resources management, 2020, 34(11): 849-863. DOI: 10.1007/s11269-019-02479-2
|
[6] |
LIU S, LIU R, TAN N Z. A spatial improved-KNN-based flood inundation risk framework for urban tourism under two rainfall scenarios[J]. Sustainability, 2021, 13(5): 2859. DOI: 10.3390/su13052859
|
[7] |
HUANG M, LIN R, HUANG S, et al. A novel approach for precipitation forecast via improved K-nearest neighbor algorithm[J]. Advanced engineering informatics, 2017(33): 89-95. DOI: 10.1016/j.aei.2017.05.003
|
[8] |
BOJANG P O, YANG T-C, PHAM Q B, et al. Linking singular spectrum analysis and machine learning for monthly rainfall forecasting[J]. Applied sciences, 2020, 10(9): 3224. DOI: 10.3390/app10093224
|
[9] |
SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015(1): 802-810. DOI: 10.48550/arXiv.1506.04214
|
[10] |
周永江, 姚宜斌, 颜笑, 等. 融合 GNSS 气象参数的 BP 神经网络雾霾预测研究[J]. 大地测量与地球动力学, 2019, 39(11): 1148-1152.
|
[11] |
刘洋, 赵庆志, 姚顽强. 基于多隐层神经网络的GNSS PWV和气象数据的降雨预测研究[J]. 测绘通报, 2019(S1): 36-40.
|
[12] |
赵庆志, 刘洋, 姚顽强. 利用最小二乘支持向量机的短临降雨预测模型构建[J]. 大地测量与地球动力学, 2021, 41(2): 152-156. DOI: 10.14075/j.jgg.2021.02.008
|
[13] |
BYUN S H, BAR-SEVER Y E. A new type of troposphere zenith path delay product of the international GNSS service[J]. Journal of geodesy, 2009, 83(3): 367-373. DOI: 10.1007/S00190-008-0288-8
|
[14] |
HUANG S, HUANG M M, LYU Y J. An improved KNN-based slope stability prediction model[J]. Advances in civil engineering, 2020(11): 1-16. DOI: 10.1155/2020/8894109
|
[15] |
WANG H, ASEFA T, SARKAR A. A novel non-homogeneous hidden Markov model for simulating and predicting monthly rainfall[J]. Theoretical and applied climatology, 2021, 143(7): 627-638. DOI: 10.1007/s00704-020-03447-2
|
[16] |
姚宜斌, 赵庆志, 李祖锋, 等. 基于全球导航卫星系统资料的短时降水预报[J]. 水科学进展, 2016, 27(3): 357-365. DOI: 10.14042/j.cnki.32.1309.2016.03.003
|