GNSS World of China

Volume 47 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
KOU Ruixiong, YANG Shuwen. Accuracy analysis of generalized extension interpolation method in QZSS satellite clock bias interpolation[J]. GNSS World of China, 2022, 47(4): 73-78. doi: 10.12265/j.gnss.2022029
Citation: KOU Ruixiong, YANG Shuwen. Accuracy analysis of generalized extension interpolation method in QZSS satellite clock bias interpolation[J]. GNSS World of China, 2022, 47(4): 73-78. doi: 10.12265/j.gnss.2022029

Accuracy analysis of generalized extension interpolation method in QZSS satellite clock bias interpolation

doi: 10.12265/j.gnss.2022029
  • Received Date: 2022-02-23
    Available Online: 2022-07-19
  • The satellite clock error data interpolation is an important link in process of high accuracy positioning data, which has directly impact on positioning accuracy. However, the common interpolation and fitting methods have different disadvantages. The generalized extension approximation method is tried to apply to the process of Quasi-Zenith Satellite System (QZSS) satellite clock error data in this paper. The principles of Lagrange interpolation, Chebyshev fitting and Generalized extension approximation method are firstly introduced, and the differences between sliding and non-sliding. Afterwards, QZSS clock error data is used to discuss the relationship between the parameters (groups) value of the above three methods and the interpolation results accuracy. Finally, when the three methods take their respectively optimal parameters (groups), the accuracy of QZSS satellite clock error is compared. The simulation results show, as long as reasonable parameter combination is selected, that the generalized extension interpolation is completely suitable to QZSS satellite clock error, and the interpolation accuracy of the generalized extension approximation method is significantly higher than other two methods.

     

  • loading
  • [1]
    夏岩, 王庆华, 宋铮, 等. 日本QZSS卫星导航系统[J]. 卫星应用, 2015(4): 40-43.
    [2]
    江永生. QZSS增强信号对GPS定位增强效果的分析[J]. 北京测绘, 2019, 33(8): 969-973.
    [3]
    布金伟, 左小清, 金立新, 等. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估[J]. 武汉大学学报(信息科学版), 2020, 45(4): 574-585,611.
    [4]
    楼益栋, 郑福, 龚晓鹏, 等. QZSS系统在中国区域增强服务性能评估与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 298-303.
    [5]
    洪樱, 欧吉坤, 彭碧波. GPS卫星精密星历和钟差三种内插方法的比较[J]. 武汉大学学报(信息科学版), 2006, 31(6): 516-518,556.
    [6]
    王兴, 高井祥, 王坚, 等. 利用滑动式切比雪夫多项式拟合卫星精密坐标和钟差[J]. 测绘通报, 2015(5): 6-8,16.
    [7]
    施浒立, 颜毅华, 徐国华. 工程科学中的广义延拓逼近法[M]. 北京: 科学出版社, 2005.
    [8]
    原波, 白征东, 付春浩. 广义延拓插值法在GPS精密钟差插值中的应用[J]. 测绘科学技术学报, 2011, 28(6): 404-406. DOI: 10.3969/j.issn.1673-6338.2011.06.004
    [9]
    化希瑞, 李仲勤, 李振昌, 等. 广义延拓插值法在BDS精密钟差中的应用[J]. 全球定位系统, 2019, 44(4): 96-101.
    [10]
    谢孟辛, 张捍卫. 切比雪夫多项式拟合GPS轨道坐标的改进算法[J]. 测绘科学, 2021, 46(6): 53-58.
    [11]
    寇瑞雄, 杨树文, 化希瑞. 切比雪夫多项式在GLONASS广播星历中的应用[J]. 导航定位学报, 2021, 9(1): 102-108.
    [12]
    李振昌, 李仲勤, 寇瑞雄. 非滑动式与滑动式拉格朗日插值法在BDS精密星历内插中的比较分析[J]. 天文研究与技术, 2019, 16(1): 54-60.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (309) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return