• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

ZHANG Xiangping, YANG Mingguang. Positioning principle and engineering application practice of Inertial Navigation System RTK technology[J]. GNSS World of China, 2022, 47(3): 109-113. DOI: 10.12265/j.gnss.2021121601
Citation: ZHANG Xiangping, YANG Mingguang. Positioning principle and engineering application practice of Inertial Navigation System RTK technology[J]. GNSS World of China, 2022, 47(3): 109-113. DOI: 10.12265/j.gnss.2021121601

Positioning principle and engineering application practice of Inertial Navigation System RTK technology

More Information
  • Received Date: December 15, 2021
  • Available Online: June 13, 2022
  • When using the traditional real-time dynamic positioning (RTK) technology, one must keep the antenna phase center of the Global Navigation Satellite System (GNSS) receiver relatively perpendicular to the measurement point during the measurement to ensure the accuracy of the measurement results. Generally a tripod should be erected. When using the centering rod for measurement, the surveyor must ensure that the leveling bubble of the centering rod call is relatively centered in order to ensure the accuracy of the measurement results. The measurement process is time-consuming and laborious. The emergence of Inertial Navigation System (INS) technology has changed the traditional habit of RTK Surveying and mapping technology. In the measurement process, there is generally no need to erect a tripod, and the measuring centering rod maintain an arbitrary tilt state within a certain range. The measurement process is relatively easy and free, which greatly reduces the labor intensity of measurement and improves the efficiency of surveying and mapping. This paper mainly analyzes the positioning principle and technical advantages of INS technology, and emphasizes that only by mastering the precautions of INS RTK technology in practical application, can it give full play to its maximum benefit and efficiency.
  • [1]
    邓海峰, 袁本银, 沈雪峰, 等. 一种新型 GNSS 接收机倾斜测量系统及方法: 201811333054.4 [P]. 2019-01-25.
    [2]
    KIM J S, LI K J. Simplification of geometric objects in an indoor space[J]. ISPRS journal of photogrammetry and remote sensing, 2019(147): 146-162. DOI: 10.1016/j.isprsjprs.2018.11.017
    [3]
    孙琛. 基于惯性导航在应急救援领域应用分析[J]. 无线互联科技, 2019, 159(11): 101-102. DOI: 10.3969/j.issn.1672-6944.2019.11.047
    [4]
    孙佳, 邹靖, 胡桐. 基于24位置的MEMS惯性传感器快捷标定标定方法[J]. 电压与声光, 2019, 41(3): 440-444.
    [5]
    刘晏铭, 武迪. 飞行器角速度测量的三轴加速度计法[J]. 力学与实践, 2020, 42(1): 17-21. DOI: 10.6052/1000-0879-19-175
    [6]
    高扬, 高逦, 乌萌, 等. GPS/IMU/DMI组合导航方法研究[J]. 西北工业大学学报, 2018, 36(2): 396-402. DOI: 10.3969/j.issn.1000-2758.2018.02.028
    [7]
    曹景伟, 朱宝全. 应用MEMS陀螺仪和加速度计的汽车运动姿态测量[J]. 重庆理工大学学报, 2018, 32(4): 48-54.
    [8]
    严恭敏, 柯欢欢, 高小鹏. 对中杆微型惯性测量单元的高精度方位初始对准方法[J]. 导航定位学报, 2020, 8(1): 15-19. DOI: 10.3969/j.issn.2095-4999.2020.01.003
    [9]
    鲁程, 王世博, 葛世荣, 等. 多惯导冗余的采煤机定位原理及其合理性分析[J]. 煤炭学报, 2019, 44(增刊2): 746-753.
    [10]
    刘振彬, 危双丰, 庞帆, 等. 基于单目及惯导的同步定位与建图方案[J]. 测绘科学, 2020, 45(9): 86-95.
    [11]
    韩 天, 郝 敏, 李传苗, 等. 基于最优基站选择的超宽带和惯导融合定位方法[J]. 导航与控制, 2021, 20(3): 55-64.
    [12]
    仪玉杰, 黄智刚, 苏雨. 一种UWB与PDR融合的行人室内定位方法[J]. 导航定位学报, 2019, 7(3): 38-43. DOI: 10.3969/j.issn.2095-4999.2019.03.007
    [13]
    张麟. 车载移动三维激光扫描技术高程精度研究[J]. 科技创新与应用, 2019, (8): 144-145.
    [14]
    丁孝兵, 高志强, 杨坤. 基于惯导和CPⅢ控制的地铁隧道移动激光扫描三维点云重建[J]. 测绘通报, 2021(9): 112-115.
    [15]
    刘才龙. 惯导技术在GNSS-RTK三维倾斜测量中的应用[J]. 阜阳师范大学学报, 2020, 37(3): 14-17.

Catalog

    Article Metrics

    Article views (811) PDF downloads (68) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return