GNSS World of China

Volume 47 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
QUAN Yiming, CHEN Shian, LIU Guangyin, TANG Xu. Positioning precision analysis on 5G mmWave and sub-6G signals[J]. GNSS World of China, 2022, 47(3): 114-118, 126. doi: 10.12265/j.gnss.2021120604
Citation: QUAN Yiming, CHEN Shian, LIU Guangyin, TANG Xu. Positioning precision analysis on 5G mmWave and sub-6G signals[J]. GNSS World of China, 2022, 47(3): 114-118, 126. doi: 10.12265/j.gnss.2021120604

Positioning precision analysis on 5G mmWave and sub-6G signals

doi: 10.12265/j.gnss.2021120604
  • Received Date: 2021-12-06
    Available Online: 2022-06-14
  • With the persistent research and rapid commercialization of 5th generation mobile communication technology (5G), China has built one of the largest commercial 5G network. Suppliers of 5G equipment start to provide new positioning features based on 5G new radio (NR). It is highly probable that the high-precision positioning technology will be gradually commercialized in the next few years. Compared with 4G long term evolution (LTE), denser network deployments and wider transmission bandwidth of 5G can bring about a significant improvement in positioning accuracy. Hopefully, 5G positioning can mitigate coverage and accuracy problems of Global Navigation Satellite Systems (GNSS) in difficult environments such as indoor and urban canyons. This article describes the differences between 5G and 4G in the measurement domain. Then the precision of Sub-6G (FR1) and high frequency mm wave (FR2) ranging measurements with Cramér-Rao bound is assessed. Followed by the description of positioning algorithms, eleven scenarios are listed with typical simulation parameters based on 3GPP specifications and commercial network configurations. The simulation results show that the precision of network synchronization is the main factor affecting the positioning quality. If the time synchronization error is 50 ns, 5G positioning precision is over 10 m. A larger bandwidth can significantly improve the ranging precision of 5G signals if the time synchronization problem can be solved by ideal synchronization or double-differencing with positioning nodes near a user end. Under ideal conditions, 5G FR1 can achieve an accuracy of about 1 m, and FR2 can achieve an accuracy of 0.16 m.

     

  • loading
  • [1]
    QUAN Y M, LAU L, ROBERTS G W, et al. Convolutional neural network based multipath detection method for static and kinematic GPS high precision positioning[J]. Remote sensing, 2018, 10(12): 2052. DOI: 10.3390/rs10122052
    [2]
    QUAN Y M, LAU L, ROBERTS G W, et al. Measurement signal quality assessment on all available and new signals of multi-GNSS (GPS, GLONASS, Galileo, BDS and QZSS) with real data[J]. Journal of navigation, 2016, 69(2): 313-334. DOI: 10.1017/S0373463315000624
    [3]
    3GPP TS 38.455. Technical specification group radio access network; NG-RAN; NR positioning protocol A (NRPPA), Release 16[S/OL]. [2021-1-10]. https://www.3gpp.org/ftp/Specs/archive/22_series/22.261/22261-gg0.zip
    [4]
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE transactions on antennas and propagation, 1986, 34(3): 276-280. DOI: 10.1109/TAP.1986.1143830
    [5]
    HWANG H K, ALIYAZICIOGLU Z, GRICE M, et al. Direction of arrival estimation using a root-music algorithm[C]//International MultiConference of Engineers and Computer Scientists, 2008.http://www.iaeng.org/publication/IMECS2008/IMECS2008_pp1507-1510.pdf
    [6]
    ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE transactions on acoustics, speech, and signal processing, 1989, 37(7): 984-995. DOI: 10.1109/29.32276
    [7]
    赵亚东, 尉志青, 冯志勇, 等. 卫星导航与5G移动通信融合架构与关键技术[J]. 电信工程技术与标准化, 2017, 30(1): 48-53. DOI: 10.3969/j.issn.1008-5599.2017.01.013
    [8]
    欧阳俊, 陈诗军, 黄晓明, 等. 面向5G移动通信网的高精度定位技术分析[J]. 移动通信, 2019, 43(9): 13-17. DOI: 10.3969/j.issn.1006-1010.2019.09.003
    [9]
    彭友志, 田野, 张炜程, 等. 5G/GNSS融合系统定位精度仿真分析[J]. 厦门大学学报(自然科学版), 2020, 59(1): 101-107.
    [10]
    WYMEERSCH H, SECO-GRANADOS G, DESTINO G, et al. 5G mmWave positioning for vehicular networks[J]. IEEE wireless communications, 2017, 24(6): 80-86. DOI: 10.1109/MWC.2017.1600374
    [11]
    3GPP TS 38.101. Technical specification group radio access network; NG; User equipment (UE) radio transmission and reception; Part 1: range 1 standalone, Release 16[S/OL]. [2021-1-10].https://www.3gpp.org/ftp//Specs/archive/38_series/38.101-1/38101-1-g60.zip
    [12]
    XU W, HUANG M, ZHU C, et al. Maximum likelihood TOA and OTDOA estimation with first arriving path detection for 3GPP LTE system[J]. Transactions on emerging telecommunications technologies, 2016, 27(3): 339-356. DOI: 10.1002/ett.2871
    [13]
    3GPP TS 38.211. Technical specification group radio access network; NG; Physical channels and modulation, Release 16[S/OL]. [2021-1-10]. https://www.3gpp.org/ftp//Specs/archive/38_series/38.211/38211-g40.zip
    [14]
    FANG B T. Simple solution for hyperbolic and related position fixes[J]. IEEE transactions on aerospace and electronic systems, 1990, 26(5): 748-753. DOI: 10.1109/7.102710
    [15]
    3GPP TS 22.261. Technical specification group services and system aspects; Service requirements for the 5G system; Stage 1, Release 16[S/OL]. [2021-1-10]. https://www.3gpp.org/ftp/Specs/archive/22_series/22.261/22261-gg0.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (230) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return