GNSS World of China
Citation: | WANG Yong, CAO Huipeng, LI Suo, YAN Yong, YANG Jun. Time series nonlinear deformation removal of GNSS coordinates based on ICEEMDAN and environmental load[J]. GNSS World of China, 2022, 47(2): 90-98. doi: 10.12265/j.gnss.2021092602 |
[1] |
REBISCHUNG P, ALTAMIMI Z, RAY J, et al. The IGS contribution to ITRF2014[J]. Journal of geodesy, 2016, 90(7): 611-630. DOI: 10.1007/s00190-016-0897-6
|
[2] |
DENG L S, LI Z, WEI N, et al. GPS-derived geocenter motion from the IGS second reprocessing campaign[J]. Earth planets and space, 2019, 71(1): 74-91. DOI: 10.1186/s40623-019-1054-2
|
[3] |
姜卫平, 李昭, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列非线性变化的成因分析[J]. 地球物理学报, 2013, 56(7): 2228-2237. DOI: 10.6038/cjg20130710
|
[4] |
DENG L S, JIANG W P, LI Z, et al. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series[J]. Journal of geodesy, 2017, 91(2): 207-227. DOI: 10.1007/s00190-016-0957-y
|
[5] |
明锋, 杨元喜, 曾安敏, 等. 中国区域IGS站高程时间序列季节性信号及长期趋势分析[J]. 中国科学(地球科学), 2016, 46(6): 834-844.
|
[6] |
GU Y C, YUAN L G, FAN D M, et al. Seasonal crustal vertical deformation induced by environmental mass loading in mainland china derived from GPS, GRACE and surface loading models[J]. Advances in space research, 2017, 59(1): 88-102. DOI: 10.1016/j.asr.2016.09.008
|
[7] |
姜卫平, 夏传义, 李昭, 等. 环境负载对区域GPS基准站时间序列的影响分析[J]. 测绘学报, 2014, 43(12): 1217-1223.
|
[8] |
陈岸, 吴毅江, 林洪栋, 等. 华北区域GNSS基准站高程时间序列的非线性变化分析[J]. 全球定位系统, 2020, 45(6): 86-91.
|
[9] |
尹涛涛, 王潜心. 一种削弱区域CORS站坐标时间序列非线性变化的方法[J]. 大地测量与地球动力学, 2021, 41(7): 695-699.
|
[10] |
张双成, 何月帆, 李振宇, 等. EMD用于GPS时间序列降噪分析[J]. 大地测量与地球动力学, 2017, 37(12): 1248-1252.
|
[11] |
蒋志浩, 张鹏, 秘金钟, 等. 顾及有色噪声影响的CGCS2000下我国CORS站速度估计[J]. 测绘学报, 2010, 39(4): 355-363.
|
[12] |
邓连生. GPS坐标时间序列中未模型化误差和环境负载的影响研究[J]. 测绘学报, 2018, 47(11): 136.
|
[13] |
SUN H P, DUCARME B, DEHANT V. Effect of the atmospheric pressure on surface displacements[J]. Journal of geodesy, 1995, 70(3): 131-139. DOI: 10.1007/BF00943688
|
[14] |
COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14(1): 19-29. DOI: 10.1016/j.bspc.2014.06.009
|
[15] |
卿龙, 袁林果, 郝景恺, 等. 台湾连续GPS网主成分空间滤波分析[J]. 大地测量与地球动力学, 2020, 40(8): 838-842.
|
[16] |
JIANG W P, LI Z, VAN D T, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of geodesy, 2013, 87(7): 687-703. DOI: 10.1007/s00190-013-0642-3
|
[17] |
LIU N, DAI W J, SANTERRE R, et al. A MATLAB-based kriged kalman filter software for interpolating missing data in GNSS coordinate time series[J]. GPS solutions, 2017, 22(1): 635-639. DOI: 10.1007/s10291-017-0689-3
|
[18] |
FAHIMAH A AL-A, ALHAJRAF A. Prediction of non-methane hydrocarbons in kuwait using regression and bayesian kriged kalman model[J]. Environmental & ecological statistics, 2012, 19(3): 393-412. DOI: 10.1007/s10651-012-0192-5
|
[19] |
BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical review letters, 2002, 88(17): 174102. DOI: 10.1103/PhysRevLett.88.174102
|
[20] |
郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013, 32(21): 21-26. DOI: 10.3969/j.issn.1000-3835.2013.21.004
|