GNSS World of China
Citation: | SUN Shuguang, YANG Xiangyuan, CHEN Wantong, ZHANG Julian, LIU Qing, REN Shiyu. Application of moving horizon estimation method for altitude constrained pseudo-range single-point positioning[J]. GNSS World of China, 2022, 47(2): 21-26, 89. doi: 10.12265/j.gnss.2021092601 |
[1] |
范福平. GNSS 实时观测数据解码及伪距单点定位性能分析[J]. 测绘与空间地理信息, 2021, 44(6): 141-144. DOI: 10.3969/j.issn.1672-5867.2021.06.039
|
[2] |
STEIGENBERGER P, MONTENBRUCK O. Consistency of MGEX orbit and clock products[J]. Engineering, 2020, 6(8): 898-903. DOI: 10.1016/j.eng.2019.12.005
|
[3] |
ZAMINPARDAZ S, TEUNISSEN P J G, NADARAJAH N. IRNSS/NavIC single-point positioning: a service area precision analysis[J]. Marine geodesy, 2017, 40(4): 259-274. DOI: 10.1080/01490419.2016.1269034
|
[4] |
LIU R X, GUO B F, ZHANG A M, et al. Research on GPS precise point positioning algorithm with a sea surface height constraint[J]. Ocean engineering, 2020(197): 106826. DOI: 10.1016/j.oceaneng.2019.106826
|
[5] |
ATIA M M, WASLANDER S L. Map-aided adaptive GNSS/IMU sensor fusion scheme for robust urban navigation[J]. Measurement, 2018(131): 615-627. DOI: 10.1016/j.measurement.2018.08.050
|
[6] |
KERMARREC G, NEUMANN I, ALKHATIB H, et al. The stochastic model for Global Navigation Satellite Systems and terrestrial laser scanning observations: a proposal to account for correlations in least squares adjustment[J]. Journal of applied geodesy, 2019, 13(2): 93-104. DOI: 10.1515/jag-2018-0019
|
[7] |
SIMON D. Optimal state estimation: Kalman, H∞, and nonlinear approaches [M]. Cleveland: Cleveland State University, 2006.
|
[8] |
HU G G, GAO B B, ZHONG Y M, et al. Unscented Kalman filter with process noise covariance estimation for vehicular INS/GPS integration system[J]. Information fusion, 2020, 64(1): 194-204. DOI: 10.1016/j.inffus.2020.08.005
|
[9] |
SIMON D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[J]. IET control theory and applications, 2010, 4(8): 1303-1318. DOI: 10.1049/iet-cta.2009.0032
|
[10] |
孔俊东. 一类滚动时域估计方法的性能指标研究[D]. 杭州: 杭州电子科技大学, 2020.
|
[11] |
SÁNCHEZ G, MURILLO M, GIOVANINI L. Adaptive arrival cost update for improving moving horizon estimation performance[J]. ISA trans, 2017(68): 54-62. DOI: 10.1016/j.isatra.2017.02.012
|
[12] |
WANG S, CHEN L, GU D B, et al. An optimization based moving horizon estimation with application to localization of autonomous underwater vehicles[J]. Robotics and autonomous systems, 2014, 62(10): 1581-1596. DOI: 10.1016/j.robot.2014.05.004
|
[13] |
ZHANG X H, ZUO X, LI P. Mathematic model and performance comparison between ionosphere free combined and uncombined precise point positioning[J]. Geomatics and information science of Wuhan University, 2013, 38(5): 561-565. DOI: 10.1016/j.robot.2014.05.004
|
[14] |
BAHADUR B, NOHUTCU M. PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis[J]. GPS solutions, 2018, 22(4): 113. DOI: 10.1007/s10291-018-0777-z
|
[15] |
LUNDBERG J B. Alternative algorithms for the GPS static positioning solution[J]. Applied mathematics and computation, 2001, 119(1): 21-34. DOI: 10.1016/S0096-3003(99)00219-2
|
[16] |
PARK C, TEUNISSEN P J G. Integer least squares with quadratic equality constraints and its application to GNSS attitude determination systems[J]. International journal of control, automation and systems, 2009, 7(4): 566-576. DOI: 10.1007/s12555-009-0408-0
|
[17] |
PHATAK M, CHANSARKAR M, KOHLI S. Position fix from three GPS satellites and altitude: a direct method[J]. IEEE transactions on aerospace and electronic systems, 2002, 35(1): 350-354. DOI: 10.1109/7.745705
|