GNSS World of China

Volume 47 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
LOU Zesheng, YANG Jing, WU Liang, SUN Yumei. Soil moisture model of Inner Mongolia based on GNSS ZTD and meteorological elements[J]. GNSS World of China, 2022, 47(1): 49-58. doi: 10.12265/j.gnss.2021090802
Citation: LOU Zesheng, YANG Jing, WU Liang, SUN Yumei. Soil moisture model of Inner Mongolia based on GNSS ZTD and meteorological elements[J]. GNSS World of China, 2022, 47(1): 49-58. doi: 10.12265/j.gnss.2021090802

Soil moisture model of Inner Mongolia based on GNSS ZTD and meteorological elements

doi: 10.12265/j.gnss.2021090802
  • Received Date: 2021-09-08
    Available Online: 2022-02-23
  • Soil water content is an important indicator of drought in agriculture and animal husbandry, and has an important impact on climate and ecology. The change trend of soil water is of great significance for regional soil erosion and climate change research. But monitoring of soil water content in China is lagging. Thus, soil water content should be investigated using other existing data. In this study, the existing Global Navigation Satellite System (GNSS) zenith tropospheric delay (ZTD) and humidity, sunshine, and evaporation data in Inner Mongolia was used to investigate soil water content inversion. The correlation between each element and soil water content was analyzed. Noises was observed in the soil water content and GNSS ZTD data. Wavelet transform was used to eliminate the noises. After denoising, the correlation between soil water content data and each element was improved, and the correlation between soil water content and humidity is the best. The average correlation between the two experimental points is 0.645. Negative correlations are observed between soil water content and sunshine and evaporation, and their average correlations are −0.561 and −0.547, respectively. The correlation between soil water content and GNSS ZTD data is the smallest, with an average correlation of 0.271. Then, a soil water content model was constructed on the basis of the correlation between each element and soil water content, and its reliability was verified. The verified error statistics show that the NMWJ station model in the experimental area has the highest accuracy, with the accuracy of 90.1%, whereas the HLAR site model has the lowest accuracy, with 69.1%. The average accuracy of each station in the study area is 81.35%. The soil water content model based on multivariable elements can provide reference for the research on the change trend of soil water content. Reasonable distribution and utilization of water resources in the region can be conducted through the research on the change trend of soil water content to conserve water resources.

     

  • loading
  • [1]
    LARSON K M, BRAUN J J, SMALL E E, et al. GPS multipath and its relation to near-surface soil moisture content[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2010, 3(1): 91-99. DOI: 10.1109/JSTARS.2009.2033612
    [2]
    BOWERS S A, HUNKS R J. Reflection of radiant energy from soils[J/OL]. [2021-08-30]. Soil science, 1965, 100 (2): 130-138. https://journals.lww.com/soilsci/Citation/1965/08000/REFLECTION_OF_RADIANT_ENERGY_FROM_SOILS.9.aspx
    [3]
    SCHMUGGE T, GLOERSEN P, WILHEIT T T, er al. Remote sensing of soil moisture with microwave radiometers[J]. Journal of geophysical research, 1974, 79(2): 317-323. DOI: 10.1029/JB079i002p00317
    [4]
    张焕武, 何林轩. 淄博地区SMAP卫星干扰原因分析[J]. 中国无线电, 2017(12): 64-65. DOI: 10.3969/j.issn.1672-7797.2017.12.038
    [5]
    周延. 对排查SMOS卫星干扰的思考[J]. 中国无线电, 2018(3): 66 DOI: 10.3969/j.issn.1672-7797.2018.03.043
    [6]
    MLADENOVA I, LAKSHMI V, JACKSON T J, et al. Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006[J]. Remote sensing of environment, 2011, 115(8): 2096-2103. DOI: 10.1016/j.rse.2011.04.011
    [7]
    罗志才, 李琼, 钟波. 利用GRACE时变重力场反演黑河流域水储量变化[J]. 测绘学报, 2012, 41(5): 676-681.
    [8]
    张为民, 王勇, 张赤军. 土壤浸湿对重力观测影响的初步分析[J]. 测绘学报, 2001, 30(2): 108-111. DOI: 10.3321/j.issn:1001-1595.2001.02.003
    [9]
    李明星, 马柱国, 杜继稳. 区域土壤湿度模拟检验和趋势分析-以陕西省为例[J]. 中国科学 (地球科学), 2010(3): 363-379.
    [10]
    FASINMIRIN J T, OLUFAYO A A, OGUNTUNDE P G. Calibration and validation of a soil water simulation simulation model for field grown Amaranthus cruentus[J]. International journal of plant produbtion, 2008, 2(3): 269-278.
    [11]
    NAKHAEI M, ŠIMŮNEK J. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code[J]. Journal of hydrology and hydromechanics, 2014, 62(1): 7-15. DOI: 10.2478/johh-2014-0008
    [12]
    RANA G, KATERJI N. Measurement and estimation of actual evapotranspiration in the field under mediterranean climate: a review[J]. European journal of agronomy, 2000, 13(2-3): 125-153. DOI: 10.1016/S1161-0301(00)00070-8
    [13]
    王雷, 刘辉志, BERNHOFER C. 土壤水分条件对内蒙古典型草原水汽和二氧化碳通量的影响研究[J]. 大气科学, 2017, 41(1): 167-177.
    [14]
    王轩, 娄泽生. 基于小波变换的GNSS ZTD与土壤水含量相关性初探[J]. 全球定位系统, 2019, 44(4): 77-81.
    [15]
    LA PIERRE K J, YUAN S H, CHANG C C, et al. Explaining temporal variation in above-ground productivity in a mesic grassland: the role of climate and flowering[J]. Journal of ecology, 2011, 99(5): 1 250-1262. DOI: 10.1111/j.1365-2745.2011.01844.x
    [16]
    RUPPERT J C, HARMONEY K, HENKIN Z, et al. Quantifying drylands’drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime[J]. Global change biolog, 2015, 21(3): 1258-1270. DOI: 10.1111/gcb.12777
    [17]
    张德丰. MATLAB小波分析 [M]. 北京: 机械工业出版社, 2011.
    [18]
    王勇, 任栋, 刘严萍, 等. 基于小波变换与回归分析的融合GNSS水汽、风速和PM10要素的PM2.5浓度模型[J]. 系统工程理论与实践, 2020, 40(3): 761-770. DOI: 10.12011/1000-6788-2018-2048-10
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (286) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return