GNSS World of China

Volume 47 Issue 2
May  2022
Turn off MathJax
Article Contents
LI Kang, JIANG Guangwei, GAO Chunwei, WANG Zushun, GAO Xinyan, DANG Yinqun. The analysis of ground deformation about Qinghai Maduo M7.4 earthquake based on GNSS[J]. GNSS World of China, 2022, 47(2): 66-72. doi: 10.12265/j.gnss.2021081803
Citation: LI Kang, JIANG Guangwei, GAO Chunwei, WANG Zushun, GAO Xinyan, DANG Yinqun. The analysis of ground deformation about Qinghai Maduo M7.4 earthquake based on GNSS[J]. GNSS World of China, 2022, 47(2): 66-72. doi: 10.12265/j.gnss.2021081803

The analysis of ground deformation about Qinghai Maduo M7.4 earthquake based on GNSS

doi: 10.12265/j.gnss.2021081803
  • Received Date: 2021-08-18
    Available Online: 2022-04-28
  • On May 22, 2021, Beijing time, an M7.4 earthquake occurred in Maduo, Qinghai province, which affected the regional stations. In this paper, we collected high-frequency observation data of Global Navigation Satellite System (GNSS) continuously operating reference stations (CORS) in Qinghai Province , which is less than 400 km from the epicenter. Using International GNSS Service (IGS) stations and China continental tectonic environment monitoring network as reference stations, static and dynamic models were used to analyze the three-dimensional surface deformation after the earthquake. The results show that, the displacement magnitude of the site shows a trend of attenuation as the epicenter distance increases. Among them, the Jiangduo station, which is about 35 km away from the epicenter, produces a permanent displacement of 28.0 cm to the south east. On the whole, the impact of the earthquake on the focal area within 100 km is shown as a strike-slip motion, which is consistent with the focal mechanism. The regional motion characteristics are generally shown as extensional-compression motion, NW-SE extension and NE-SW compression.

     

  • loading
  • [1]
    李晓峰. 2016年1月21日青海门源Ms6.4地震震源机制解及发震构造初步探讨[J]. 地震工程学报, 2017, 39(4): 657-661. DOI: 10.3969/j.issn.1000-0844.2017.04.0657
    [2]
    马玉虎, 黄浩, 王培玲, 等. 2015年青海玛多5.2级地震发震构造及其预测意义[J]. 高原地震, 2017, 29(1): 1-6. DOI: 10.3969/j.issn.1005-586X.2017.01.001
    [3]
    中国新闻网. 中国地震台网中心: 青海玛多7.4级地震与云南漾鼻地震类型不同[EB/OL]. (2021-05-22)[2020-06-10]. http://www.chinanews.com/gn/2021/05-22/9483235.shtml
    [4]
    武艳强, 江在森, 朱爽, 等. 中国大陆西部GNSS变形特征及其与M≥7.0强震孕育的关系[J]. 中国地震, 2020, 36(4): 756-766.
    [5]
    瞿伟, 高源, 陈海禄, 等. 利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J]. 地球科学与环境学报, 2021, 43(1): 182-204.
    [6]
    郝明, 王庆良. GNSS空间大地测量技术在中国大陆活动地块划分中的应用和研究进展[J]. 地震地质, 2020, 42(2): 283-296. DOI: 10.3969/j.issn.0253-4967.2020.02.003
    [7]
    王小瑞, 党引群, 高新妍, 等. 利用GPS监测网分析尼泊尔地震对珠峰地区及周边影响[J]. 全球定位系统, 2016, 41(3): 73-77.
    [8]
    杨建文, 张鹏映, 何应文, 等. 2018年通海两次5.0级地震前GNSS观测异常及震后云南地区的应变变化[J]. 大地测量与地球动力学, 2020, 40(1): 30-34.
    [9]
    蒋光伟, 程传录, 田晓静, 等. 日本大地震(Mw 9.0)对中国大地基准框架的影响[J]. 测绘通报, 2014(1): 16-18.
    [10]
    蒋光伟, 王斌, 王延伟, 等. 顾及基准站坐标动态特性与稳定性的区域框架构建[J]. 地球物理学进展, 2020, 35(1): 8-15. DOI: 10.6038/pg2020CC0400
    [11]
    王琰, 宋力杰, 黄令勇. GPS卫星精密定轨中的摄动力分析[J]. 测绘工程, 2013, 22(5): 16-20,24. DOI: 10.3969/j.issn.1006-7949.2013.05.005
    [12]
    姚文敏, 方荣新, 王珍, 等. 高频GNSS观测快速估计地震震级及其精度评估[J]. 大地测量与地球动力学, 2019, 39(12): 1249-1253.
    [13]
    刘严萍, 王勇, 胡小刚, 等. 基于GPS的日本9.0级地震地表形变监测研究[J]. 灾害学, 2013, 28(4): 95-98. DOI: 10.3969/j.issn.1000-811X.2013.04.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (337) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return