• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

CHEN Weiliang, DU Jiusheng. Extracting the temporal and spatial distribution characteristics of urban residents by using trajectory data[J]. GNSS World of China, 2022, 47(1): 103-110. DOI: 10.12265/j.gnss.2021081602
Citation: CHEN Weiliang, DU Jiusheng. Extracting the temporal and spatial distribution characteristics of urban residents by using trajectory data[J]. GNSS World of China, 2022, 47(1): 103-110. DOI: 10.12265/j.gnss.2021081602

Extracting the temporal and spatial distribution characteristics of urban residents by using trajectory data

More Information
  • Received Date: August 15, 2021
  • Available Online: February 28, 2022
  • A process of extracting the temporal and spatial distribution characteristics of urban residents by using taxi trajectory data is introduced, including: using the method of mathematical statistics to analyze the time-based characteristics of taxi boarding and alighting events; A density clustering algorithm integrating kernel density estimation (KDE) and point of interest (POI) classification is proposed, which realizes the mining of taxi loading and unloading hot spots and the discovery of the relationship between residents' travel activity law and urban functional areas. The research shows that the trajectory characteristics of residents show obvious differences between “work-rest” days and different periods, and this difference is closely related to the distribution of urban functional areas.
  • [1]
    李婷, 裴韬, 袁烨城, 等. 人类活动轨迹的分类、模式和应用研究综述[J]. 地理科学进展, 2014, 33(7): 938-948. DOI: 10.11820/dlkxjz.2014.07.009
    [2]
    GUO D S. Flow mapping and multivariate visualization of large spatial interaction data[J]. IEEE transactions on visualization and computer graphics, 2009, 15(6): 1041-1048. DOI: 10.1109/TVCG.2009.143
    [3]
    陈占龙, 周路林, 禹文豪, 等. 顾及兴趣点潜在上下文关系的城市功能区识[J]. 测绘学报, 2020, 49(7): 907-920.
    [4]
    姜晶莉, 郭黎, 李豪. 基于出租车轨迹数据的道路空驶率分析[J]. 兰州交通大学学报, 2019, 38(3): 95-100. DOI: 10.3969/j.issn.1001-4373.2019.03.016
    [5]
    姚尧, 张亚涛, 关庆锋, 等. 使用时序出租车轨迹识别多层次城市功能结构[J]. 武汉大学学报(信息科学版), 2019, 44(6): 875-884.
    [6]
    贾涛, 李琦, 马楚, 等. 武汉市出租车轨迹二氧化碳排放的时空模式分析[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1115-1123.
    [7]
    赵夏君. 基于GPS轨迹数据的城市路段交通拥堵时序分析[J]. 湖南交通科技, 2018, 44(3): 210-215. DOI: 10.3969/j.issn.1008-844X.2018.03.057
    [8]
    邬群勇, 张良盼, 吴祖飞. 利用出租车轨迹数据识别城市功能区[J]. 测绘科学技术学报, 2018, 35(4): 413-417,424.
    [9]
    许涛. 基于海量出租车轨迹数据的旅行时间预测[D]. 上海: 华东师范大学, 2017.
    [10]
    许震洲. 轨迹大数据下城市异常移动模式研究及可视化[D]. 西安: 西北大学, 2019.
    [11]
    LAHA A K, PUTATUDA S. Real time locating prediction with taxi-GPS data streams[J]. Transportation research part C:emerging technologies, 2018(92): 298-322. DOI: 10.1016/j.trc.2018.05.005
    [12]
    ZHOU Z J, DOU W C, JIA G C, et al. A method for real-time trajectory monitoring to improve taxi service using GPS big data[J]. Information and management, 2016, 53(8): 964-977. DOI: 10.1016/j.im.2016.04.004
    [13]
    GONG S H, CARTLIDGE J, BAI R B, et al. Activity modelling using journey pairing of taxi trajectory data[C]// The 4th IEEE International Conference on Big Data Analytics(ICBDA), 2019. DOI: 10.1109/ICBDA.2019.8712832
    [14]
    李明晓, 张恒才, 仇培元, 等. 一种基于模糊长短期神经网络的移动对象轨迹预测算法[J]. 测绘学报, 2018, 47(12): 1660-1669. DOI: 10.11947/j.AGCS.2018.20170268
    [15]
    边文涛. 基于轨迹分段及聚类的GPS轨迹地图匹配方法研究[D]. 西安: 西北大学, 2020.
    [16]
    马云飞. 基于出租车轨迹点的居民出行热点区域与时空特征研究: 以昆山市为例[D]. 南京: 南京师范大学, 2014.
    [17]
    DAVIS R A, LII K S, POLITIS D N. Remarks on some nonparametric estimates of a density function[J]. Selected works in probability and statistics, 2011, 27(3): 832-837. DOI: 10.1007/978-1-4419-8339-8_13
    [18]
    PARZEN E. On estimation of a probability density function and mode[J]. Annals of mathermatical statistics, 1962, 33(3): 1065-1076. DOI: 10.1214/aoms/1177704472
    [19]
    孙涛. 1644—1855年间黄河决溢的时空分布规律初探[J]. 云南大学学报(社会科学版), 2020, 19(1): 78-86.
    [20]
    BORRUSO G. Network density estimation: a GIS approach for analyzing point patterns in a network space[J]. Transactions in GIS, 2010, 12(3): 377-402. DOI: 10.1111/j.1467-9671.2008.01107.x
    [21]
    禹文豪, 艾廷华, 刘鹏程, 等. 设施POI分布热点分析的网络核密度估计方法[J]. 测绘学报, 2015, 44(12): 1378-1383.

Catalog

    Article Metrics

    Article views (581) PDF downloads (69) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return