GNSS World of China

Volume 47 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
SANG Wengang, LIU Yingchun, HE Xiufeng, WANG Zhaoran. Retrieving water surface height with high accuracy and reliability based on GNSS-R in reservoir area and its validation[J]. GNSS World of China, 2022, 47(1): 43-48. doi: 10.12265/j.gnss.2021062501
Citation: SANG Wengang, LIU Yingchun, HE Xiufeng, WANG Zhaoran. Retrieving water surface height with high accuracy and reliability based on GNSS-R in reservoir area and its validation[J]. GNSS World of China, 2022, 47(1): 43-48. doi: 10.12265/j.gnss.2021062501

Retrieving water surface height with high accuracy and reliability based on GNSS-R in reservoir area and its validation

doi: 10.12265/j.gnss.2021062501
  • Received Date: 2021-06-25
    Available Online: 2022-02-23
  • The Global Navigation Satellite System Reflectometry (GNSS-R) providess a novel solution for water level monitoring with high temporal-spatial resolution. It has a great potentiality especially in our country, in large and medium-sized dams or high-steep slopes of reservoir banks, which GNSS deformation monitoring systems have been established. It can provide abundant data resources without extra hardware equipment. In this paper, the algorithm of satellite reflection signal inversion of water surface height is deduced based on GPS signal-to-noise (SNR) ratio data firstly. And then available satellites and section are determined and the trend term removal and Lomb-Scargle spectrum analysis is completed on this basis to provide a complete data processing process of inversion of water surface height. Through the actual measurement at the dam body and the flood gate of Wohushan reservoir in Jinan, the inverted water level is compared to the actual measured water level. The results demonstrate that the accuracy of the inversion height of the two separate stations reaches the centimetre level and meets the water level monitoring requirements. It also fully verified the feasibility and reliability of GNSS-R water level monitoring using the established GNSS deformation monitoring system in the dam and reservoir area.

     

  • loading
  • [1]
    马中民, 张双成, 刘奇, 等. 普适型GPS用于黄河盐锅峡水位监测分析[J]. 南京信息工程大学学报, 2021, 13(2): 187-193.
    [2]
    MARTIN-NEIRA M, CAPARRINI M, FONT-ROSSELLO J, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE transactions on geoscience and remote sensing, 2001, 39(1): 142-150. DOI: 10.1109/36.898676
    [3]
    刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报(信息科学版), 2007, 32(11): 955-960.
    [4]
    刘奇, 张双成, 南阳, 等. 星载GNSS-R相干信号用于南亚洪水探测研究[J/OL]. (2021-04-29)[2021-05-16]. 武汉大学学报(信息科学版), 2021. http://doi.org/10.13203/j.whugis20210056
    [5]
    彭学峰, 万玮, 李飞, 等. GNSS-R土壤水分遥感的适宜性分析[J]. 遥感学报, 2017, 21(3): 341-350.
    [6]
    万玮, 陈秀万, 彭学峰, 等. GNSS遥感研究与应用进展和展望[J]. 遥感学报, 2016, 20(5): 858-874.
    [7]
    王冬伟, 孙越强, 王先毅, 等. 使用北斗三号B2a反射信号测量水面高度与试验研究[J/OL]. (2021-12-24)[2021-05-20]. 武汉大学学报(信息科学版), 2021. https://doi.org/10.13203/j.whugis20200278
    [8]
    金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398. DOI: 10.11947/j.AGCS.2017.20170282
    [9]
    吕铮, 冯威, 黄丁发. GNSS SNR信号反演大坝水位变化[J]. 大地测量与地球动力学, 2020, 40(2): 146-151.
    [10]
    MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355.
    [11]
    LARSON K M, LOFGREN J S, HASS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in space research, 2013, 51(8): 1301-1310. DOI: 10.1016/j.asr.2012.04.017
    [12]
    吴继忠, 杨荣华. 利用GPS接收机反射信号测量水面高度[J]. 大地测量与地球动力学, 2012, 32(6): 135-138.
    [13]
    匡翠林, 刘凯, 周要宗. 基于GPS信噪比数据观测海平面变化研究[J]. 海洋测绘, 2018, 38(6): 37-40. DOI: 10.3969/j.issn.1671-3044.2018.06.009
    [14]
    SONG M F, XIAO R Y, HE X F, et al. Water level measurements using multi-station and dual-system GNSS-MR-a case of Shuangwangcheng reservoir[C]//China Satellite Navigation Conference, Springer, Singapore, 2019: 163-173. DOI: 10.1007/978-981-13-7751-8_17
    [15]
    张驰, 张书毕, 陈国栋. GNSS-R水位反演的技术精度研究[J]. 测绘科学, 2020, 45(6): 31-36.
    [16]
    程文. 基于GPS信噪比观测值的水位反演研究[J]. 全球定位系统, 2020, 45(1): 105-109.
    [17]
    南阳, 张双成, 黄亮, 等. GPS-IR技术用于河水面测高实验分析[J]. 导航定位与授时, 2020, 7(2): 126-131.
    [18]
    南阳, 张双成, 张勤, 等. GNSS多径反射探测海平面变化初探[J]. 测绘科学, 2015, 40(12): 125-129.
    [19]
    张双成, 戴凯阳, 南阳, 等. GNSS-MR技术用于雪深探测的初步研究[J]. 武汉大学学报(信息科学版), 2018, 43(2): 234-240.
    [20]
    邓攀, 王泽民, 安家春, 等. 利用小波分解的GNSS-R雪厚反演改进算法[J]. 武汉大学学报(信息科学版), 2021, 46(6): 863-870.
    [21]
    RUF T. The lomb-scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series[J]. Biological rhythm research, 1999, 30(2): 178-201. DOI: 10.1076/brhm.30.2.178.1422
    [22]
    徐斌, 杨涛, 谭保华, 等. 基于Lomb-Scargle算法的周期信号探测的模拟研究[J]. 核电子学与探测技术, 2011, 31(6): 702-705. DOI: 10.3969/j.issn.0258-0934.2011.06.026
    [23]
    何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178. DOI: 10.11947/j.AGCS.2020.20200228
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (498) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return