GNSS World of China

Volume 46 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
GUO Cheng, WU Fei, ZHU Hai. Adaptive detection method pedestrian step frequency in multi scenes[J]. GNSS World of China, 2021, 46(6): 98-106. doi: 10.12265/j.gnss.2021062101
Citation: GUO Cheng, WU Fei, ZHU Hai. Adaptive detection method pedestrian step frequency in multi scenes[J]. GNSS World of China, 2021, 46(6): 98-106. doi: 10.12265/j.gnss.2021062101

Adaptive detection method pedestrian step frequency in multi scenes

doi: 10.12265/j.gnss.2021062101
  • Received Date: 2021-06-21
    Available Online: 2021-12-29
  • Aiming at the problems of over counting and wrong counting in step frequency detection, which affect the indoor positioning accuracy of pedestrian dead reckoning (PDR), an adaptive step frequency detection algorithm is proposed. Because there is a large amount of interference noise in the data directly collected by the built-in acceleration sensor of smart phone, a combined filtering denoising method is proposed.The acceleration data is denoised by preprocessing filter combination of exponential hull moving average, Kalman filter (KF) and low-pass filter. Then, in different scenes, such as upstairs and downstairs, horizontal ground and unlimited walking speed, the number of peak-valley values is obtained after the peak-valley value de differentiation, adaptive dynamic threshold and peak-valley value pairing detection algorithm, so as to achieve accurate step counting in multi scenes and multi gait. The experimental results show that, compared with the peak detection method and dynamic threshold algorithm, the proposed method can effectively eliminate the false steps and adapt to the upstairs and downstairs scenes, and the average accuracy of the experiment in the comprehensive scene reaches 99.44%.

     

  • loading
  • [1]
    JIN Y Y, TOH H S, SOH W S, et al. A robust dead-reckoning pedestrian tracking system with low cost sensors[C]// IEEE International Conference on Pervasive Computing and Communications, 2011. DOI: 10.1109/PERCOM.2011.5767590
    [2]
    WU Y, ZHU H B, DU Q X, et al. A survey of the research status of pedestrian dead reckoning systems based on inertial sensors[J]. International journal of automation and computing, 2018, 16(1): 1-83. DOI: 10.1007/s11633-018-1150-y
    [3]
    PEEBLES P Z J. Probability, random variable and random signal principles[M]. New York: McGraw Hill, 1993.
    [4]
    KANG W H, HAN Y N. SmartPDR: smartphone-based pedestrian dead reckoning for indoor localization[J]. IEEE sensors journal, 2015, 15(5): 2906-2916. DOI: 10.1109/JSEN.2014.2382568
    [5]
    JANG H J, KIM J W, HWANG D H. Robust step detection method for pedestrian navigation systems[J]. Electronics letters, 2007, 43(14): 749-751. DOI: 10.1049/el:20070478
    [6]
    TUMKUR K, SUBBIAH S. Modeling human walking for step detection and stride determination by 3-Axis accelerometer readings in pedometer[C]//The 4th International Conference on Computational Intelligence. Modelling and Simulation, 2012. DOI: 10.1109/CIMSim.2012.65
    [7]
    TANG Z H, GUO Y, CHEN X Q. Self-adaptive step counting on smartphones under unrestricted stepping modes[C]// IEEE 40th Annual Computer Software and Applications Conference(COMPASC), 2016. DOI: 10.1109/COMPSAC.2016.187
    [8]
    CHIEN J C, HIRAKAWA K, SHIEH J S, et al. An effective algorithm for dynamic pedometer calculation[C]// International Conference on Intelligent Informatics and Biomedical Sciences(ICIIBMS), 2015. DOI: 10.1109/ICIIBMS.2015.7439458
    [9]
    魏芬, 邓海琴. 基于加速度传感器的运动步数检测算法研究[J]. 电子器件, 2016, 39(5): 1175-1179. DOI: 10.3969/j.issn.1005-9490.2016.05.031
    [10]
    王岚, 彭敏, 周清峰. 基于自适应双阈值的计步算法[J]. 计算机应用研究, 2020, 37(5): 1741-1744,1773.
    [11]
    NGOC-HUYNH H, TRUONG P H, JEONG G-M. Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone[J]. Sensors, 2016, 16(9): 1423. DOI: 10.3390/s16091423
    [12]
    ZHANG H M, YUAN W Z, SHEN Q, et al. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition[J]. IEEE sensors journal, 2014, 15(3): 1421-1429. DOI: 10.1109/JSEN.2014.2363157
    [13]
    SUSI M, RENAUDIN V, LACHAPELLE G. Motion mode recognition and step detection algorithms for mobile phone users[J]. Sensors, 2013, 13(2): 1539-1562. DOI: 10.3390/s130201539
    [14]
    梁久祯, 朱向军, 陈璟. 基于手机加速度传感器的高精低采样计步算法设计[J]. 西北大学学报(自然科学版), 2015, 5(45): 738-744.
    [15]
    ZHANG R, BANNOURA A, HÖFLINGER F, et al. Indoor localization using a smart phone[C]//IEEE Sensors Applications Symposium Proceedings, 2013. DOI: 10.1109/SAS.2013.6493553
    [16]
    李若涵, 张金艺, 徐德政, 等. 运动分类步频调节的微机电惯性测量单元室内行人航迹推算[J]. 上海大学学报(自然科学版), 2014, 20(5): 612-623.
    [17]
    THANH P V, NGUYEN D A, DINH D N, et al. Highly accurate step counting at various walking states using low-cost inertial measurement unit support indoor positioning system[J]. Sensors, 2018, 18(10): 22. DOI: 10.3390/s18103186
    [18]
    RAUDYS A , LENČIAUSKAS V, MALČIUS E. Moving averages for financial data smoothing[C]//International Conference on Information and Software Technologies, 2013(403): 34-45. DOI: 10.1007/978-3-642-41947-8_4
    [19]
    胡增科, 朱锋, 刘万科. 利用Butterworth滤波器平滑加速度计的双天线GNSS/MEMS组合测姿[J]. 大地测量与地球动力学, 2020, 40(1): 51-55.
    [20]
    贺锋涛, 赵胜利, 周广平, 等. 基于模糊逻辑的室内导航步长估计方法研究[J]. 电子技术应用, 2016, 42(11): 59-61,65.
    [21]
    王文杰, 李军. 基于手机加速度传感器的计量算法设计[J]. 工业控制计算机, 2016, 29(1): 75-76,79. DOI: 10.3969/j.issn.1001-182X.2016.01.033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (391) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return