GNSS World of China

Volume 47 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
GU Jiachen, TIAN Kunjun, SONG Chuanfeng. A GNSS control network configuration selection method considering geometric precision factor[J]. GNSS World of China, 2022, 47(3): 51-55, 72. doi: 10.12265/j.gnss.2021051401
Citation: GU Jiachen, TIAN Kunjun, SONG Chuanfeng. A GNSS control network configuration selection method considering geometric precision factor[J]. GNSS World of China, 2022, 47(3): 51-55, 72. doi: 10.12265/j.gnss.2021051401

A GNSS control network configuration selection method considering geometric precision factor

doi: 10.12265/j.gnss.2021051401
  • Received Date: 2021-05-14
    Available Online: 2022-06-16
  • In the relative positioning baseline calculation process, selection of the coordinate position of the control network constraint point has a certain impact on the data calculation accuracy. This paper discusses the site selection method of the control network configuration considering the minimumgeometric factor of precision (GDOP), the selection of 6 constraint point reference stations for the global MGEX (Multi-GNSS Experiment) stations, and the use of BeiDou-2/BeiDou-3 (BDS-2/BDS-3) actual measurement data to compare the results of 18 Interactive Generator of Multimedia Application System (iGMAS) stations around the world. The station coordinates are calculated and compared with the accuracy of the results of the global grid-based random station selection method. The experimental results show that compared with the grid-based random station selection method, when the GDOP value selection method is used to calculate the relative positioning baseline, the standard deviation of the baseline length above 6 000 km can be increased by about 7 mm. For the long baseline, the standard deviation accuracy in east (E), north (N), up (U) can be increased by about 5 mm; the position accuracy of the pending point can be increased by about 40%. It can be seen that GDOP method can improve the relative positioning accuracy of BDS-2/BDS-3.

     

  • loading
  • [1]
    中国卫星导航系统管理办公室(CSNO). 北斗卫星导航系统发展报告(4.0 版)[R]. 2019.
    [2]
    中国卫星导航管理办公室. 北斗卫星导航系统发展报告(3.0版)[R]. 2018.
    [3]
    蒋志浩, 张鹏, 秘金钟, 等. 基于CGCS2000的中国地壳水平运动速度场模型研究[J]. 测绘学报, 2009, 38(6): 471-476. DOI: 10.3321/j.issn:1001-1595.2009.06.001
    [4]
    杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39(1): 1-6.
    [5]
    张双成, 王利, 黄观文. 全球导航卫星系统GNSS最新进展及带来的机遇和挑战[J]. 工程勘察, 2010, 38(8): 49-53.
    [6]
    YARLAGADDA R, ALI L, AL-DHAHIR N, et al. GPS GDOP metric[J]. IEE proceedings-radar sonar and navigation, 2000, 147(5): 259-264. DOI:10.1049/ip-rsn: 20000554
    [7]
    李建文, 李作虎, 周巍, 等. 卫星导航中几何精度衰减因子最小值分析及应用[J]. 测绘学报, 2011, 40(S1): 85-88,94.
    [8]
    盛琥, 杨景曙, 曾芳玲. 伪距定位中的GDOP最小值[J]. 火力与指挥控制, 2009, 34(5): 22-24. DOI: 10.3969/j.issn.1002-0640.2009.05.006
    [9]
    李冉, 赵春梅, 郑作亚, 等. 基于全球MGEX数据的北斗导航星座精密轨道确定[J]. 大地测量与地球动力学, 2015, 35(4): 662-665.
    [10]
    韩德强, 党亚民, 薛树强, 等. GNSS卫星精密定轨全球地面基准站网随机优化算法[J]. 武汉大学学报(信息科学版), 2019, 44(6): 799-805.
    [11]
    MU R H, DANG Y M, XU C H. BDS-3/GNSS data quality and positioning performance analysis[C]//The 11th China Satellite Navigation Annual Conference-S02 Navigation and location Services, 2020 (1): 368-379. DOI: 10.1007/978-981-15-3707-3_35
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (209) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return