GNSS World of China

Volume 46 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
KUANG Yulong, LEI Mengfei. Application of X-11-ARIMA model in post-processing of GNSS positioning data[J]. GNSS World of China, 2021, 46(5): 92-98. doi: 10.12265/j.gnss.2021051201
Citation: KUANG Yulong, LEI Mengfei. Application of X-11-ARIMA model in post-processing of GNSS positioning data[J]. GNSS World of China, 2021, 46(5): 92-98. doi: 10.12265/j.gnss.2021051201

Application of X-11-ARIMA model in post-processing of GNSS positioning data

doi: 10.12265/j.gnss.2021051201
  • Received Date: 2021-05-12
    Available Online: 2021-11-02
  • Positioning data analysis and post-processing is essential part in the application of Global Navigation Satellite System in S/M and geological hazard monitoring and forecast project. Generally, the smooth data obtained after the Kalman filter processes the positioning data can eliminate noise interference and obtain data close to the true value. However, in the case of a long-term span, the periodic interference is difficult to identify and filter out in a short time, which is reflected as a kind of lower frequency noise fluctuation. This paper assumes that the fluctuation interference is periodic, and uses the X-11 decomposition time series analysis method for data processing. After smoothing, the variance of the positioning data is reduced from 4.733 to 2.683, and the accuracy is increased by 43.3%. And perform autoregressive integrated moving average mode (ARIMA) modeling and prediction on the split data. When compare the restored data with the direct prediction data, we can draw the conclusion that the accuracy of the separate prediction and integration restoration is basically higher than that of the direct prediction by 5% to 10%, so as to deal with the problem of poor real-time smoothing.

     

  • loading
  • [1]
    何伟, 张伦宁, 贺成成, 等. 地灾监测的大数据信息平台研究及应用[J]. 测绘通报, 2019(1): 127-131.
    [2]
    刘丹, 王剑, 姜维, 等. 列车组合定位系统定位精度评估方法研究[J]. 铁道学报, 2019, 41(11): 79-87.
    [3]
    单伟, 何群. 基于非线性时间序列的预测模型检验与优化的研究[J]. 电子学报, 2008, 36(12): 2485-2489.
    [4]
    游贤菲. X11-ARIMA模型在全国手足口病发病数预测中的应用[J]. 产业与科技论坛, 2020, 19(7): 64-66.
    [5]
    张立欣, 张艳波, 杨翠芳. 基于X11-ARIMA模型的铁路货运周转量分析[J]. 数学的实践与认识, 2018, 48(17): 154-161.
    [6]
    LUO X G, MAYER M, HECK B. Verification of ARMA identification for modelling temporal correlations of GNSS observations using the ARMASA toolbox[J]. Studia geophysica et geodaetica, 2011, 55(3): 537-556. DOI: 10.1007/s11200-011-0033-2
    [7]
    LUO X G, MAYER M, HECK B. Analysing time series of GNSS residuals by means of AR (I) MA processes[C]//The 7th Hotine-Marussi Symposium on Mathematical Geodesy. Springer, Berlin, Heidelberg, 2012: 129-134. DOI: 10.1007/978-3-642-22078-4_19
    [8]
    ANSARI K, PARK K-D, KUBO N. Linear time-series modeling of the GNSS based TEC variations over southwest japan during 2011–2018 and comparison against ARMA and GIM models[J]. Acta astronautica, 2019(165): 248-258. DOI: 10.1016/j.actaastro.2019.09.017
    [9]
    HILLMER S C, TIAO G C. An ARIMA-model-based approach to seasonal adjustment[J]. Journal of the american statistical association, 1982, 77(377): 63-70. DOI: 10.1080/01621459.1982.10477767
    [10]
    JUNAIDI, BULIALI J L, SAIKHU A. Improving ARIMA forecasting accuracy using decomposed signal on PH and turbidity at SCADA based water treatment[C]//The 3rd International Conference on Information and Communications Technology (ICOIACT) IEEE, 2020: 131-136. DOI: 10.1109/ICOIACT50329.2020.9332080
    [11]
    PENG Y, LEI M, LI J B, et al. A novel hybridization of echo state networks and multiplicative seasonal ARIMA model for mobile communication traffic series forecasting[J]. Neural computing and applications, 2014, 24(3): 883-890. DOI: 10.1007/s00521-012-1291-9
    [12]
    XIN J Z, ZHOU J T, YANG S X, et al. Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model[J]. Sensors (basel switzerland), 2018, 18(1): 298. DOI: 10.3390/s18010298
    [13]
    LI Q S, DONG Y, WANG D J, et al. A real-time inertial-aided cycle slip detection method based on ARIMA-GARCH model for inaccurate lever arm conditions[J]. GPS solutions, 2021, 25(1): 1-16. DOI: 10.1007/s10291-020-01077-9
    [14]
    JANPAULE I, BALODIS J, HARITONOVA D, et al. Geomagnetic storms and their influence on gnss time series[DS/OL]. [2021-05-01]. Ģeodinamika un ģeokosmiskie pētījumi, 2017: 24-26.
    [15]
    王振龙. 时间序列分析[M]. 北京: 中国统计出版社. 2000.
    [16]
    雷孟飞, 孔超, 周俊华. 自适应卡尔曼滤波在BDS变形监测数据处理中的应用[J]. 导航定位学报, 2019, 7(4): 75-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (299) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return