GNSS World of China
Citation: | ZHANG Wentao, WU Fei, ZHU Hai, TONG Yanhui, LU Wenxia. Indoor fingerprint localization method based on FDE-IRF[J]. GNSS World of China, 2021, 46(4): 117-126. doi: 10.12265/j.gnss.2021030102 |
[1] |
GU Y Y, LO A, NIEMEGEERS I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE communications surveys and tutorials, 2009, 11(1): 13-32. DOI: 10.1109/SURV.2009.090103
|
[2] |
PENG X S, CHEN R Z, YU K G, et al. A new Wi-Fi dynamic selection of nearest neighbor localization algorithm based on RSS characteristic value extraction by hybrid filtering[J]. Measurement science and technology, 2021, 32(3): 034003. DOI: 10.1088/1361-6501/abc510
|
[3] |
WOO S K, JEONG S S, MOK E, et al. Application of Wi-Fi-based indoor positioning system for labor tracking at construction sites: a case study in Guangzhou MTR[J]. Automation in construction, 2011, 20(1): 3-13. DOI: 10.1016/j.autcon.2010.07.009
|
[4] |
DING X X, WANG B B, WANG Z J. Dynamic threshold location algorithm based on fingerprinting method[J]. ETRI journal, 2018, 40(4): 531-536. DOI: 10.4218/etrij.2017-0155
|
[5] |
TIAN X H, SHEN R F, LIU D W, et al. Performance analysis of RSS fingerprinting based indoor localization[J]. IEEE transactions on mobile computing, 2016, 16(10): 2847-2861. DOI: 10.1109/TMC.2016.2645221
|
[6] |
曹子腾, 郭阳, 赵正旭, 等. 室内定位技术研究综述[J]. 计算机技术与发展, 2020, 30(6): 202-206. DOI: 10.3969/j.issn.1673-629X.2020.06.039
|
[7] |
HE S N, CHAN S H G. Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons[J]. IEEE communications surveys and tutorials, 2016, 18(1): 466-490. DOI: 10.1109/COMST.2015.2464084
|
[8] |
YASSIN A, NASSER Y, AWAD M, et al. Recent advances in indoor localization: a survey on theoretical approaches and applications[J]. IEEE communications surveys and tutorials, 2017, 19(2): 1327-1346. DOI: 10.1109/COMST.2016.2632427
|
[9] |
DENG Z L, YU Y P, YUAN X, et al. Situation and development tendency of indoor positioning[J]. China communications, 2013, 10(3): 42-55. DOI: 10.1109/CC.2013.6488829
|
[10] |
ZHAO H L, HUANG B Q, JIA B. Applying kriging interpolation for Wi-Fi fingerprinting based indoor positioning systems[C]//IEEE Wireless Communications and Networking Conference, 2016. DOI: 10.1109/WCNC.2016.7565018
|
[11] |
王轩, 陈国良, 曹晓祥, 等. 自适应K值及指纹库扩充的WLAN室内定位方法[J]. 测绘科学, 2020, 45(7): 26-32.
|
[12] |
RAHMAN M A A, KARIM M K A, BUNDAK C E A. Weighted local access point based on fine matching k-nearest neighbor algorithm for indoor positioning system[C]// International Annual Conference (AEIT), 2019. DOI: 10.23919/AEIT.2019.8893365
|
[13] |
CHEN R, YE F. An overview of indoor positioning technology based on Wi-Fi channel state information[J]. Geomatics and information science of Wuhan University, 2018, 43(12): 2064-2070. DOI: 10.13203/j.whugis20180176
|
[14] |
CHEN R Z, CHU T X, LIU K Q, et al. Inferring human activity in mobile devices by computing multiple contexts[J]. Sensors, 2015, 15(9): 21219-21238. DOI: 10.3390/s150921219
|
[15] |
LEE S M, KIM J, MOON N. Random forest and Wi-Fi fingerprint-based indoor location recognition system using smart watch[J]. Human-centric computing and information sciences, 2019, 9(1): 6. DOI: 10.1186/s13673-019-0168-7
|
[16] |
王日升, 谢红薇, 安建成. 基于分类精度和相关性的随机森林算法改进[J]. 科学技术与工程, 2017, 17(20): 67-72. DOI: 10.3969/j.issn.1671-1815.2017.20.012
|
[17] |
张家伟, 郭林明, 杨晓梅. 针对不平衡数据的过采样和随机森林改进算法[J]. 计算机工程与应用, 2020, 56(11): 39-45. DOI: 10.3778/j.issn.1002-8331.1908-0338
|
[18] |
SWANGMUANG N, KRISHNAMURTHY P. Location fingerprint analyses toward efficient indoor positioning[C]//The 6th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), 2008. DOI: 10.1109/PERCOM.2008.33.
|
[19] |
YOUSSEF M A, AGRAWALA A, SHANKAR A U. WLAN location determination via clustering and probability distributions[C]//The 1st IEEE International Conference on Pervasive Computing and Communications, 2003. DOI: 10.1109/PERCOM.2003.1192736
|
[20] |
BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5-32. DOI: 10.1023/A:1010933404324
|