GNSS World of China

Volume 46 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
LI Xianghao, CHEN Feiqiang, LU Zukun, LIU Zhe, HAN Chunyang, OU Gang. Analysis of the influence of time-domain anti-interference on correlation peaks under channel characteristics[J]. GNSS World of China, 2021, 46(6): 55-62. doi: 10.12265/j.gnss.2021012902
Citation: LI Xianghao, CHEN Feiqiang, LU Zukun, LIU Zhe, HAN Chunyang, OU Gang. Analysis of the influence of time-domain anti-interference on correlation peaks under channel characteristics[J]. GNSS World of China, 2021, 46(6): 55-62. doi: 10.12265/j.gnss.2021012902

Analysis of the influence of time-domain anti-interference on correlation peaks under channel characteristics

doi: 10.12265/j.gnss.2021012902
  • Received Date: 2021-01-29
    Available Online: 2021-12-17
  • Due to the non-ideal characteristics of analog components such as antennas and RF front-ends, ranging errors will occur in the Global Navigation Satellite System (GNSS) receiver. At present, the deviation of the ranging value caused by the traditional anti-jamming algorithm has become the main obstacle to the improvement of the accuracy of high-precision ranging receiver. In this paper, theoretical derivation proves that when the channel characteristics are ideal, the correlation function will still be asymmetric due to the time-varying characteristics of the anti-jamming filter coefficients under iteration and the uncertainty of the interference auto correlation value. When the channel characteristics are not ideal, the traditional time-domain anti-jamming algorithm based on a single antenna will further deteriorate the originally asymmetrical correlation peak distortion. It is proved that under the non-ideal channel characteristics, the asymmetric correlation peak distortion caused by the time-domain anti-interference filter is further deteriorated due to the superposition effect of the correlation functions of each delay.

     

  • loading
  • [1]
    LU Z K, NIE J W, WAN, Y D, et al. Optimal reference element for interference suppression in GNSS antenna arrays under channel mismatch[J]. IET radar, sonar and navigation, 2017, 11(7): 1161-1169. DOI: 10.1049/iet-rsn.2016.0582
    [2]
    WEI X, LIU W X, SUN G F. Modernization milestone: BeiDou M2-S initial signal analysis[J]. GPS solutions, 2016, 20(1): 125-133. DOI: 10.1007/s10291-015-0496-7
    [3]
    RUSU-CASANDRA A, MARGHESCU I, ELENA-SIMONA L. Impact of narrowband interference on unambiguous acquisition approaches in Galileo[C]//Internatianal Conference on Localization and GNSS, 2011. DOI: 10.1109/ICL-GNSS.2011.5955281
    [4]
    李建. 单天线卫星导航接收机强干扰抑制关键技术研究[D]. 长沙: 国防科技大学, 2017.
    [5]
    PANY P, ESSFELLER B. Demonstration of a synthetic phased array antenna for carrier/code multipath mitigation[C]//The 21st International Technical Meeting of the Satellite Division of The Institute of Navigation, 2008: 663-668.
    [6]
    ZHANG T Q, ZHANG X M, LU M Q. Effect of frequency domain anti-jamming filter on satellite navigation signal tracking performance[C]//The 4th China Satellite Navigation Conference (CSNC) 2013 Proceedings, 2013: 507-516. DOI: 10.1007/978-3-642-37398-5-46
    [7]
    KEEGAN R G, KNIGHT J E. Signal receiver with group delay and amplitude distortion compensation: US8837654[P]. 2014.
    [8]
    范广腾, 倪少杰, 唐小妹, 等. 非理想信道下测量零值无偏干扰抑制滤波器设计[J]. 国防科技大学学报, 2016, 38(2): 126-127.
    [9]
    李柏渝. 高性能卫星导航接收机模拟信道关键技术研究[D]. 长沙: 国防科学技术大学, 2011.
    [10]
    DANDEKAR K R, LING H, XU G H. Smart antenna array calibration procedure including amplitude and phase mismatch and mutual coupling effects[C]//IEEE International Conference on Personal Wireless Communications, 2000: 293-297. DOI: 10.1109/ICPWC.2000.905822
    [11]
    HAN Q W, PANG J, NIE J W, et al. Influence of interference type upon adaptive GNSS antenna array performance [C]//IEEE/ION Position, Location and Navigation Symposium, 2014: 1057-1064. DOI: 10.1109/PLANS.2014.6851474
    [12]
    MA C J, NI J, TANG X M, et al. Zero-bias elimination with selective non-commensurate sampling for pseudo-code tracking[J]. IET radar, sonar and navigation, 2020, 14(3): 349-355. DOI: 10.1049/iet-rsn.2019.0161
    [13]
    DIMOS G, UPADHYAY T N. Digital adaptive transversal filter for spread spectrum receiver: US5268927 [P]. 1993.
    [14]
    范广腾. 非理想信道下抗干扰接收机高精度测距技术研究[D]. 长沙: 国防科技大学研究生院, 2016.
    [15]
    高鹰, 谢胜利. 一种变步长LMS自适应滤波算法及分析[J]. 电子学报, 2001, 29(8): 1094-1097. DOI: 10.3321/j.issn:0372-2112.2001.08.023
    [16]
    聂俊伟. 卫星导航接收机时域自适应抗干扰算法研究与实现[M]. 长沙: 国防科技大学, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (208) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return