GNSS World of China

Volume 46 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHU Zhiya, GUO Wei. Terrain optimization method for low-frequency ground-wave propagation delay calculation[J]. GNSS World of China, 2021, 46(4): 27-32. doi: 10.12265/j.gnss.2021012501
Citation: ZHU Zhiya, GUO Wei. Terrain optimization method for low-frequency ground-wave propagation delay calculation[J]. GNSS World of China, 2021, 46(4): 27-32. doi: 10.12265/j.gnss.2021012501

Terrain optimization method for low-frequency ground-wave propagation delay calculation

doi: 10.12265/j.gnss.2021012501
  • Received Date: 2021-01-25
    Available Online: 2021-08-17
  • The additional secondary phase factor (ASPF) plays an important role in propagation delay of the low-frequency ground-wave. A method of calculating attenuation for ground-wave propagating over irregular terrain called integral function has been developed recently. It is derived by means of a stationary-phase integration that reduces the dimensionality of the general version, but such an approximation is not valid for all terrain types. The terrain of the actual propagation path changes greatly, and the actual propagation path is corrected by the mathematical morphology method to keep the basic geometric contour and smoothness of the path. The calculation results of the integral equation method show that the actual propagation path can be effectively optimized through the mathematical morphology method.

     

  • loading
  • [1]
    熊皓. 无线电波传播[M]. 北京: 电子工业出版社, 2000.
    [2]
    FOCK V. Diffraction of radio waves around the earth's surface[J]. Journal of physical, 1945(15): 479-496.
    [3]
    WAIT J R, HOUSEHOLDER J. Mixed-path ground wave propagation, II. larger distances[J]. Journal of research of the national bureau of standards, 1957(59): 19-26. DOI: 10.6028/jres.059.003
    [4]
    MILLINGTON G. Ground-wave propagation over an inhomogeneous smooth earth[J]. Journal of the institution of electrical engineers, 1949, 96(39): 53-64. DOI: 10.1049/pi-3.1949.0013
    [5]
    HUFFORD G A. An integral equation approach to the problem of wave propagation over an irregular surface[J]. Quarterly of applied mathematics, 1952, 9(4): 391-404. DOI: 10.1090/qam/44350
    [6]
    周丽丽, 穆中林, 蒲玉蓉, 等. 不规则地形地波传播衰减因子的改进算法及结果一致性研究[J]. 电子与信息学报, 2015, 37(9): 2254-2259.
    [7]
    MATHERON G. Random sets and integral geometry[M]. New York: Wiley, 1975.
    [8]
    SERRA J. Introduction to mathematical morphology[J]. Computer vision, graphics, and image processing, 1986, 35(3): 283-305. DOI: 10.1016/0734-189X(86)90002-2
    [9]
    潘威炎. 长波超长波及长波传播[M]. 成都: 电子科技大学出版社, 2004.
    [10]
    SOMMERFELD A N. The propagation of waves in wireless telegraphy[J]. Annals of physics, 1926, 386(25): 1135-1153. DOI: 10.1002/andp.19263862516
    [11]
    WATSON G N. The diffraction of radio waves by the earth[J]. Royal sociaty, 1918, 666(95): 83-99. DOI: 10.1098/rspa.1918.0050
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (439) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return