GNSS World of China
Citation: | HU Yuan, ZHONG Licheng, CHEN Xingyang, GU Wangwang, LIU Wei. A summary of research on GNSS-R signal-to-noise ratio signal height measurement technology on the sea[J]. GNSS World of China, 2021, 46(4): 1-7. doi: 10.12265/j.gnss.2021011502 |
[1] |
陈俊任, 周晓华, 余彬彬. 海洋测绘中压力式验潮仪零点漂移修正方法[J]. 测绘技术装备, 2018, 20(4): 84-86, 77. DOI: 10.3969/j.issn.1674-4950.2018.04.026
|
[2] |
HALL C D, CORDEY R. Multistatic scatterometry[C]//International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century, 1988. DOI: 10.1109/IGARSS.1988.570200
|
[3] |
CAMPS A, PARK H, PABLOS M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 1-13. DOI: 10.1109/JSTARS.2016.2588467
|
[4] |
CLARIZIA M P, PIERDICCA N, COSTANTINI F, et al. Analysis of CYGNSS data for soil moisture retrieval[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2019, 12(7): 2227-2235. DOI: 10.1109/JSTARS.2019.2895510
|
[5] |
EROGLU O, KURUM M, BOYD D R, et al. High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks[J]. Remote sensing, 2019, 11(19): 2272. DOI: 10.3390/rs11192272
|
[6] |
KATZBERG S J, TORRES O, GRANT M S, et al. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: results from SMEX02[J]. Remote sensing of environment, 2006, 100(1): 17-28. DOI: 10.1016/j.rse.2005.09.015
|
[7] |
ARROYO A A, CAMPS A, AGUASCA A, et al. Dual-polarization GNSS-R interference pattern technique for soil moisture mapping[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1533-1544. DOI: 10.1109/JSTARS.2014.2320792
|
[8] |
CALABIA A, MOLINA I, JIN S G. Soil moisture content from GNSS reflectometry using dielectric permittivity from fresnel reflection coefficients[J]. Remote sensing, 2020, 12(1): 122. DOI: 10.3390/rs12010122
|
[9] |
JIN S G, NAJIBI N. Sensing snow height and surface temperature variations in greenland from GPS reflected signals[J]. Advances in space research, 2014, 53(11): 1623-1633. DOI: 10.1016/j.asr.2014.03.005
|
[10] |
JIN S G, QIAN X D, KUTOGLU H. Snow depth variations estimated from GPS-reflectometry: a case study in Alaska from L2P SNR data[J]. Remote sensing, 2016, 8(1): 63. DOI: 10.3390/rs8010063
|
[11] |
MCCREIGHT J L, SMALL E E, LARSON K M. Snow depth, density, and SWE estimates derived from GPS reflection data: validation in the western US[J]. Water resources research, 2014, 50(8): 6892-6909. DOI: 10.1002/2014WR015561
|
[12] |
NAJIBI N, JIN S G. Physical reflectivity and polarization characteristics for snow and ice-covered surfaces interacting with GPS signals[J]. Remote sensing, 2013, 5(8): 4006-4030. DOI: 10.3390/rs5084006
|
[13] |
NAJIBI N, JIN S G, WU X R. Validating the variability of snow accumulation and melting from GPS-reflected signals: forward modeling[J]. IEEE transactions on antennas and propagation, 2015, 63(6): 2646-2654. DOI: 10.1109/TAP.2015.2414950
|
[14] |
MALIK J S, BHATTI U I. Remote sensing of ocean, ice and land surfaces using bistatically scattered GNSS signals from low earth orbit[C]//The 4th International Conference on Aerospace Science and Engineering (ICASE), 2015. DOI: 10.1109/ICASE.2015.7489519
|
[15] |
YAN Q Y, HUANG W M. Spaceborne GNSS-R sea ice detection using delay-doppler maps: first results from the UK TechDemoSat-1 mission[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4795-4801. DOI: 10.1109/JSTARS.2016.2582690
|
[16] |
YAN Q Y, HUANG W M. Sea ice sensing from GNSS-R data using convolutional neural networks[J]. IEEE geoscience and remote sensing letters, 2018, 15(10): 1510-1514. DOI: 10.1109/LGRS.2018.2852143
|
[17] |
YAN Q Y, HUANG W M. Detecting sea ice from TechDemoSat-1 data using support vector machines with feature selection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2019, 12(5): 1409-1416. DOI: 10.1109/JSTARS.2019.2907008
|
[18] |
LI C, HUANG W M. Sea surface oil slick detection from GNSS-R delay-doppler maps using the spatial integration approach[C]//IEEE Radar Conference (RADAR), 2013. DOI: 10.1109/RADAR.2013.6585990
|
[19] |
VALENCIA E, CAMPS A, PARK H, et al. Oil slicks detection using GNSS-R[C]//IEEE International Geoscience and Remote Sensing Symposium, 2011. DOI: 10.1109/IGARSS.2011.6050203
|
[20] |
VALENCIA E, CAMPS A, RODRIGUEZ-ALVAREZ N, et al. Using GNSS-R imaging of the ocean surface for oil slick detection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2012, 6(1): 217-223. DOI: 10.1109/JSTARS.2012.2210392
|
[21] |
陈闪闪, 张云, 洪中华, 等. GNSS 反射信号海面溢油回波 DDM 仿真研究[J]. 全球定位系统, 2017, 42(3): 15-19.
|
[22] |
MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355.
|
[23] |
SOULAT F, CAPARRINI O, GERMAIN P, et al. Sea state monitoring using coastal GNSS-R[J]. Geophysical research letters, 2004, 31(21): 303. DOI: 10.1029/2004GL020680
|
[24] |
LARSON K M, LÖFGREN J S, HAAS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in space research, 2013, 51(8): 1301-1310. DOI: 10.1016/j.asr.2012.04.017
|
[25] |
RIBOT M A, KUCWAJ J C, BOTTERON C, et al. Normalized GNSS interference pattern technique for altimetry[J]. Sensors (basel), 2014, 14(6): 10234-10257. DOI: 10.3390/s140610234
|
[26] |
CARDELLACH E, FABRA F, NOGUÉS-CORREIG O, et al. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: application to the GOLD-RTR data sets[J]. Radio science, 2011, 46(6): RS0C04. DOI: 10.1029/2011RS004683
|
[27] |
GEREMIA-NIEVINSKI F G, LARSON K M. Inverse modeling of GPS multipath for snow depth estimation—part Ⅱ: application and validation[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(10): 6564-6573. DOI: 10.1109/TGRS.2013.2297688
|
[28] |
吴夏平, 王福明. 基于最小二乘法原理的趋势项处理研究[J]. 微计算机信息, 2008, 24(30): 254-255. DOI: 10.3969/j.issn.1008-0570.2008.30.102
|
[29] |
STRANDBERG J, HOBIGER T, HAAS R. Improving GNSS-R sea level determination through inverse modeling of SNR data[J]. Radio science, 2016, 51(8): 1286-1296. DOI: 10.1002/2016RS006057
|
[30] |
李惟, 朱云龙, 王峰, 等. GNSS 多径信号模型及测高方法[J]. 北京航空航天大学学报, 2018, 44(6): 1239-1245.
|
[31] |
LOMB N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophysics and space science, 1976, 39(2): 447-462. DOI: 10.1007/BF00648343
|
[32] |
SCARGLE J D. Studies in astronomical time series analysis. Ⅱ-Statistical aspects of spectral analysis of unevenly spaced data[J]. The astrophysical journal, 1982(263): 835-853. DOI: 10.1086/160554
|
[33] |
马秀红, 曹继平, 董晟飞. 小波分析及其应用[J]. 微机发展, 2003, 13(8): 58-61.
|
[34] |
WANG X L, ZHANG Q, ZHANG S C. Water levels measured with SNR using wavelet decomposition and lomb–scargle periodogram[J]. GPS solutions, 2018, 22(1): 22. DOI: 10.1007/s10291-017-0684-8
|
[35] |
CHEN F, LIU L L, GUO F. Sea surface height estimation with multi-GNSS and wavelet de-noising[J]. Scientific reports, 2019, 9(1): 15181. DOI: 10.1038/s41598-019-51802-9
|
[36] |
苏晓容, 张云, 韩彦岭, 等. 岸基 GNSS 单天线潮位高度小波分析反演[J]. 导航定位学报, 2019, 7(4): 87-93. DOI: 10.3969/j.issn.2095-4999.2019.04.016
|
[37] |
王杰, 何秀凤, 王笑蕾, 等. 小波分析在 GNSS-IR 潮位反演中的应用[J]. 导航定位学报, 2020, 8(2): 82-89. DOI: 10.3969/j.issn.2095-4999.2020.02.014
|
[38] |
MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE transactions on pattern analysis and machine intelligence, 1989, 11(7): 674-693. DOI: 10.1109/34.192463
|
[39] |
KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of basic engineering, 1960(82D): 35-45. DOI: 10.1115/1.3662552
|
[40] |
JAZWINSKI A H. Stochastic process and filtering theory, academic press[M]. A subsidiary of Harcourt Brace Jovanovich Publishers, 1970.
|
[41] |
WAN E A, MERWE R V D. The unscented Kalman filter for nonlinear estimation[C]//IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), 2000: 153-158. DOI: 10.1109/ASSPCC.2000.882463
|
[42] |
STRANDBERG J, HOBIGER T, HAAS R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data[J]. GPS solutions, 2019, 23(3): 61. DOI: 10.1007/s10291-019-0851-1
|