GNSS World of China

Volume 46 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
GAO Qingwen, ZHAO Guochen. Ionospheric TEC forecast model of based on CEEMD and GRNN[J]. GNSS World of China, 2021, 46(4): 76-84. doi: 10.12265/j.gnss.2020091401
Citation: GAO Qingwen, ZHAO Guochen. Ionospheric TEC forecast model of based on CEEMD and GRNN[J]. GNSS World of China, 2021, 46(4): 76-84. doi: 10.12265/j.gnss.2020091401

Ionospheric TEC forecast model of based on CEEMD and GRNN

doi: 10.12265/j.gnss.2020091401
  • Received Date: 2020-09-14
    Available Online: 2021-04-23
  • Aiming at the problem of non-linear and non-stationary electrons in the ionospheric total electron content (TEC), and high noise caused by multiple factors, a CEEMD-GRNN ionospheric TEC prediction model combining the complementing ensemble empirical mode decomposition (CEEMD) and generalized regression neural network (GRNN) to solve the problem of poor fitting and low prediction accuracy caused by direct use of raw data for prediction. The ionospheric data of 2019 from IGS center for high, middle and low latitude are used. Different day of year data with magnetic storms and without magnetic storms are tested. Results show that the RMSE of low latitude is 0.97 and the relative accuracy is 91.28, which verifies that the accuracy of the CEEMD-GRNN forecast model is higher than that of the EMD-GRNN and the single GRNN model.

     

  • loading
  • [1]
    周仁宇, 胡志刚, 苏牡丹,等. 北斗全球系统广播电离层模型性能初步评估[J]. 武汉大学学报(信息科学版), 2019, 44(10): 1457-1464.
    [2]
    邓忠新. 电离层TEC暴及其预报方法研究[D]. 武汉: 武汉大学, 2012.
    [3]
    陈军, 李建文, 李作虎. ARIMA模型在电离层TEC预报中的应用[J]. 测绘工程, 2010, 19(1): 39-41.
    [4]
    张小红, 任晓东, 吴风波, 等. 自回归移动平均模型的电离层总电子含量短期预报[J]. 测绘学报, 2014, 43(2): 118-124.
    [5]
    孙茂存, 李俊锋, 李飞, 等. 基于BP人工神经网络的震前电离层VTEC异常扰动研究[J]. 测绘通报, 2015(6): 16-19.
    [6]
    任成冕, 熊晶. 利用BP神经网络探测2012年印尼8.6级地震前的电离层异常扰动[J]. 大地测量与地球动力学, 2012, 32(增刊): 28-31.
    [7]
    刘先冬, 宋力杰, 杨晓晖, 等. 基于小波神经网络的电离层TEC短期预报[J]. 海洋测绘, 2010, 30(5): 49-51, 55.
    [8]
    汤俊, 姚宜斌, 陈鹏, 等. 利用EMD方法改进电离层TEC预报模型[J]. 武汉大学学报(信息科学版), 2013, 38(4): 408-411, 444.
    [9]
    吉长东, 王强, 王贵朋, 等. 深度学习LSTM模型的电离层总电子含量预报[J]. 导航定位学报, 2019, 7(3): 76-81.
    [10]
    范国清, 王威, 郗晓宁. 基于广义回归神经网络的电离层VTEC建模[J]. 测绘学报, 2010, 39(1): 16-21.
    [11]
    鄢高韩, 杨午阳, 杨庆, 等. CEEMD高分辨率时频分析方法研究与应用[J]. 地球物理学进展, 2016, 31(4): 1709-1715. DOI: 10.6038/pg20160440
    [12]
    赵迎, 乐友喜, 黄健良, 等. CEEMD与小波变换联合去噪方法研究[J]. 地球物理学进展, 2015, 30(6): 2870-2877. DOI: 10.6038/pg20150655
    [13]
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings mathematical physical and engineering sciences, 1998, 454(1971): 903-995. DOI: 10.1098/rspa.1998.0193
    [14]
    CHENG J S, YU D J, YANG Y. Research on the intrinsic mode function (IMF) criterion in EMD method[J]. Mechanical systems and signal processing, 2006, 20(4): 817-824. DOI: 10.1016/j.ymssp.2005.09.011
    [15]
    WU Z H, HUANG N E. Ensemble empirical mode decompposition: a noise-assisyed data analysis method[J]. Advances in adaptive data analysis, 2009, 1(1): 1-41. DOI: 10.1142/S1793536909000047
    [16]
    YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel nosie enhanced data analysis method[J]. Advances in adaptive data analysis, 2010, 2(2): 135-156. DOI: 10.1142/S1793536910000422
    [17]
    杨洪军, 徐娟娟, 刘杰. 基于VMD和GRNN的混沌时间序列预测[J]. 计算机仿真, 2019, 36(3): 448-452.
    [18]
    SPECHT D F. A general regression neural network[J]. IEEE transactions on neural networks, 1991, 2(6): 568-576. DOI: 10.1109/72.97934
    [19]
    姚宜斌, 张顺, 孔建. 2011年电离层和太阳活动指数的准21.5天振荡分析[J]. 测绘学报, 2017, 46(1): 9-15. DOI: 10.11947/j.AGCS.2017.20160067
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (817) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return