GNSS World of China
Citation: | GUO Qiuying, HOU Jianhui, LIU Chuanyou, XU Mingze, SUN Yingjun. Preliminary analysis of atmospheric water vapor detection performance based on BDS-3[J]. GNSS World of China, 2021, 46(1): 89-97, 111. doi: 10.12265/j.gnss.2020090802 |
[1] |
DAI A G, WANG J H, WARE R H, et al. Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity[J]. Journal of geophysical research atmospheres, 2002, 107(D10): ACL-11. DOI: 10.1029/2001JD000642.
|
[2] |
徐祥德, 陶诗言, 王继志, 等. 青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002(3): 257-266.
|
[3] |
BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of geophysical research atmospheres, 1992, 97(D14): 15787-15807. DOI: 10.1029/92JD01517.
|
[4] |
ROCKEN C, WARE R, VAN HOVE T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophysical research letters, 1993, 20(23): 2631-2634. DOI: 10.1029/93GL02935.
|
[5] |
BRAUN O, ROCKEN C, WARE R. Validation of line-of-sight water vapor measurements with GPS[J]. Radio science, 2001, 36(3): 459-472. DOI: 10.1029/2000RS002353.
|
[6] |
RAJA M K R V, GUTMAN S I, MCMILLIN J G, et al. The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based gps receivers over the contiguous united states[J]. Journal of atmospheric and oceanic technology, 2008, 25(3): 416-428. DOI: 10.1175/2007JTECHA889.1.
|
[7] |
LEE S W, KOUBA J, SCHUTZ B, et al. Monitoring precipitable water vapor in real-time using global navigation satellite systems[J]. Journal of geodesy, 2013, 87(10): 923-934. DOI: 10.1007/s00190-013-0655-y.
|
[8] |
施闯, 王海深, 曹云昌, 等. 基于北斗卫星的水汽探测性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 285-289.
|
[9] |
EMARDSON T R, ELGERED G, JOHANSSON J M. Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers[J]. Journal of geophysical research, 1998, 103(D2): 1807-1820. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD03015.
|
[10] |
BOCK O, FLAMANT C, RICHARD E, et al. Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP[J]. Quarterly journal of the royal meteorological society, 2005, 131(612): 3013-3036. DOI: 10.1256/qj.05.27.
|
[11] |
高为广, 苏牡丹, 李军正, 等. 北斗卫星导航系统试运行服务性能评估[J]. 武汉大学学报(信息科学版), 2012, 37(11): 1352-1355.
|
[12] |
张强, 赵齐乐, 章红平, 等. 北斗卫星导航系统Klobucha模型精度评估[J]. 武汉大学学报(信息科学版), 2014, 39(2): 142-146.
|
[13] |
肖乐杰, 孙付平, 李亚萍, 等. IGSO/GEO卫星对北斗系统导航性能的贡献分析[J]. 全球定位系统, 2016, 41(3): 16-20.
|
[14] |
马下平, 鲁尚强, 李秦政, 等. 北斗卫星导航系统的空间信号精度评估[J]. 测绘科学, 2019, 44(1): 90-97.
|
[15] |
王敬平, 姜鑫, 褚少鹤, 等. 北斗卫星导航系统定位精度研究[J]. 软件, 2019, 40(10): 152-154. DOI: 10.3969/j.issn.1003-6970.2019.10.034
|
[16] |
魏钢, 高皓, 项宇. 北斗二号与北斗三号定位精度对比分析[J]. 导航定位学报, 2020, 8(2): 8-11. DOI: 10.3969/j.issn.2095-4999.2020.02.002
|
[17] |
HÉROUX P , KOUBA J. GPS precise point positioning using IGS orbit products[J]. Physics and chemismistry of the earth, part A: solid earth and geodesy, 2001, 26 (6-8): 573-578. DOI: 10.1016/S1464-1895(01)00103-X.
|
[18] |
SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bullet in geodesique, 1972, 105(1): 279-298. DOI: 10.1007/BF02521844.
|
[19] |
HOPFIELD H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data[J]. Radio science, 1971, 6(3): 357-367. DOI: 10.1029/RS006i003p00357.
|
[20] |
Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate[DS/OL]. [2020-06-07]. Copernicus Climate Change Service Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home.
|
[21] |
吴仁攀, 曾琪, 虞顺. BDS-3数据质量评估及定位性能分析[C]//第十届中国卫星导航年会论文集-SOS空间基准与精密定位. 中科北斗汇(北京)科技有限公司会议论文集, 2019: 1-5.
|
[22] |
程军龙, 王旺, 马立烨, 等. 北斗三号观测数据质量及定位精度初步评估[J]. 测绘通报, 2019(8): 1-7.
|