GNSS World of China
Citation: | LU Jiawei, XU Zhe. Visual inertial positioning method based on tight coupling[J]. GNSS World of China, 2021, 46(1): 36-42. doi: 10.12265/j.gnss.2020082801 |
[1] |
GUI J J, GU D B, WANG H S, et al. A review of visual inertial odometry from filtering and optimisation perspectives[J]. Advanced robotics, 2015, 29(20): 1289-1301. DOI: 10.1080/01691864.2015.1057616.
|
[2] |
WEISS S, SIEGWART R. Real-time metric state estimation for modular vision-inertial systems[C]//2011 IEEE International Conference on Robotics and Automation, 2011. DOI: 10.1109/ICRA.2011.5979982.
|
[3] |
WEISS S, ACHTELIK M W, LYNEN S, et al. Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments[C]//2012 IEEE International Conference on Robotics and Automation, 2012. DOI: 10.1109/ICRA.2012.6225147.
|
[4] |
MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007. DOI: 10.1109/ROBOT.2007.364024.
|
[5] |
LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The international journal of robotics research, 2014, 34(3): 314-334. DOI: 10.1177/0278364914554813.
|
[6] |
QIN T, LI P, SHEN S. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE transactions on robotics, 2018, 34(4): 1004-1020. DOI: 10.1109/TRO.2018.2853729.
|
[7] |
陈小宁, 黄玉清, 杨佳. 多传感器信息融合在移动机器人定位中的应用[J]. 传感器与微系统, 2008, 27(6): 110-113. DOI: 10.3969/j.issn.1000-9787.2008.06.035
|
[8] |
褚辉, 李长勇, 杨凯, 等. 多信息融合的物流机器人定位与导航算法的研究[J]. 机械设计与制造, 2019(4): 240-243. DOI: 10.3969/j.issn.1001-3997.2019.04.059
|
[9] |
MUR-ARTAL, TARDOS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255-1262. DOI: 10.1109/TRO.2017.2705103.
|
[10] |
罗文超, 刘国栋, 杨海燕. SIFT和改进的RANSAC算法在图像配准中的应用[J]. 计算机工程与应用, 2013, 49(15): 147-149. DOI: 10.3778/j.issn.1002-8331.1112-0200
|
[11] |
MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[J]. Proceedings of the 33rd international conference on machine learning, 2016, 48: 1928-1937.
|