GNSS World of China

Volume 45 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
HAN Xuefa, WU Fei, ZHU Hai, YAN Song, HU Rui. Indoor fingerprint positioning method based  on RSSI modified by GF-KF[J]. GNSS World of China, 2020, 45(3): 54-62. doi: DOI:10.13442/j.gnss.1008-9268.2020.03.011
Citation: HAN Xuefa, WU Fei, ZHU Hai, YAN Song, HU Rui. Indoor fingerprint positioning method based  on RSSI modified by GF-KF[J]. GNSS World of China, 2020, 45(3): 54-62. doi: DOI:10.13442/j.gnss.1008-9268.2020.03.011

Indoor fingerprint positioning method based  on RSSI modified by GF-KF

doi: DOI:10.13442/j.gnss.1008-9268.2020.03.011
  • Publish Date: 2020-06-15
  • Aiming at the problems that Wi-Fi signals are susceptible to external uncertainties such as noise, and the RSSI received by mobile terminals deviates from the true value, which results in low positioning accuracy, this paper proposes an indoor fingerprint positioning method based on RSSI modified by GF-KF. Because the collected RSSI is unstable, this method uses the characteristics of the RSSI like Gaussian distribution to perform a Gaussian fit on the RSSI data to obtain a relatively determined RSSI value. Based on this, a Kalman filter algorithm is introduced to correct the RSSI data after fitting, and the WKNN matching algorithm is used to locate. The experimental results show that the average positioning error of the method in this paper is 1.50 m, and the cumulative distribution probability of positioning errors within 2.0 m is 90.06%, and the positioning effect is better than similar methods.

     

  • loading
  • [1]
    HUANG J Y, TSAI C H, HUANG S T. The next generation of GPS navigation systems[J]. Communications of the acm, 2012, 55(3): 84-93.DOI: 10.1145/2093548.2093570.
    [2]
    李霖,王伟,谭永滨,等. 导航与LBS关键技术标准化研究进展[J]. 测绘通报, 2014(5): 95-98,126.
    [3]
    FERREIRA A F G, FERNANDES D M A, CATARINO A P, et al. Localization and positioning systems for emergency responders: a survey[J]. IEEE communications surveys & tutorials, 2017, 19(4): 2836-2870.DOI: 10.1109/COMST.2017.2703620.
    [4]
    XIA H, ZUO J, LIU S, et al. Indoor localization on smartphones using built-in sensors and map constraints[J]. IEEE transactions on instrumentation and measurement, 2019, 68(4): 1189-1198.DOI: 10.1109/TIU.2018.2863478.
    [5]
    吴雨,杨力,王梦茹,等. 基于Android平台的WiFi定位系统研究与实现[J]. 全球定位系统, 2016, 41(4): 90-93.
    [6]
    JIA B, HUANG B, GAO H, et al. Selecting critical WiFi APs for indoor localization based on a theoretical error analysis[J]. IEEE access, 2019(7): 36312-36321.DOI: 10.1109/ACCESS.2019.2905372.
    [7]
    YIN Z, JIANG X, YANG Z, et al. WUB-IP: a high-precision UWB positioning scheme for indoor multiuser applications[J]. IEEE systems journal, 2019, 13(1): 279-288.DOI: 10.1109/JSYST.2017.2766690.
    [8]
    SHI W G, DU J X, CAO X W, et al. IKULDAS: an improved kNNbased UHF RFID indoor localization algorithm for directional radiation scenario[J]. Sensors, 2019(19):968.DOI: 10.3309/S19040968.
    [9]
    BIANCHI V, CIAMPOLINI P, DE MUNARI I. RSSIbased indoor iocalization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE transactions on instrumentation and measurement, 2019, 68(2): 566-575.DOI: 10.1109/TIM.2018.2851675.
    [10]
    ZUO Z, LIU L, ZHANG L, et al. Indoor positioning based on bluetooth lowenergy beacons adopting graph optimization[J]. Sensors, 2018, 18(11): 3736.DOI: 10.3309/s18113736.
    [11]
    SHAH S B, CHEN Z, YIN F, et al. 3D weighted centroid algorithm & RSSI ranging model strategy for node localization in WSN based on smart devices[J]. Sustainable cities and society, 2018(39): 298-308.DOI: 10.1016/j.scs.2018.02.022.
    [12]
    BURGESS S, KUANG Y, ASTROM K, et al. TOA sensor network selfcalibration for receiver and transmitter spaces with difference in dimension[J]. Signal processing, 2015(107): 33-42.DOI: 10.1016/j.sigpro.2014.05.034.
    [13]
    WU S X, ZHANG S J, XU K, et al. Neural network localization with TOA measurements based on error learning and matching[J]. IEEE access, 2019(7): 19089-19099.DOI:10.1109/ACCESS.2019.2897 153.
    [14]
    WU C, HOU H, WANG W, et al. TDOA based indoor positioning with NLOS identification by machine learning[C]//2018 10th International Conference on Wireless Communications and Signal Processing(WCSP),2018.DOI: 10.1109/WCSP.2018.8555654.
    [15]
    [KG*2]HE S, CHAN S H G. WiFi fingerprintbased indoor positioning: recent advances and comparisons[J]. IEEE communications surveys and tutorials, 2016, 18(1): 466-490.DOI: 10.1109/COMST.2015.2464084.
    [16]
    王磊,周慧,蒋国平,等. 基于WiFi的自适应匹配预处理WKNN算法[J]. 信号处理, 2015, 31(9): 1067-1074.
    [17]
    左仲亮. 基于WIFI指纹的手机室内定位系统设计与实现[D]. 合肥:安徽大学, 2018.
    [18]
    冯涛,阮超,郭凯旋,等. 基于归一化RSS和约束WKNN的WiFi指纹定位算法[J]. 传感器与微系统, 2018, 37(10): 127-129.
    [19]
    HU J, LIU D, YAN Z, et al. Experimental analysis on weight Knearest neighbor indoor fingerprint positioning[J]. IEEE internet of things journal, 2019, 6(1): 891-897.DOI: 10.1109/J107.2018.2864607.
    [20]
    杨斌,李灯熬,赵菊敏. 基于区域划分的局部更新指纹定位算法[J]. 计算机工程与应用, 2018, 54(17): 56-61.
    [21]
    张颖. 基于RSSI的室内位置指纹定位算法研究[D]. 太原:太原理工大学, 2019.
    [22]
    FARIZ N, JAMIL N, DIN M M. An improved indoor location technique using kalman filtering on RSSI[J]. Jounal of computational and theoretical nanoscience,2018,24(3):1591-1598.DOI: 10.1166/asl.2018.11116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (432) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return