GNSS World of China

Volume 45 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
YUAN Yang, ZHOU Ruyan, ZHANG Yun. Research on the location algorithm of android mobile phone based on extended Kalman filter[J]. GNSS World of China, 2020, 45(2): 105-111. doi: DOI:10.13442/j.gnss.1008-9268.2020.02.017
Citation: YUAN Yang, ZHOU Ruyan, ZHANG Yun. Research on the location algorithm of android mobile phone based on extended Kalman filter[J]. GNSS World of China, 2020, 45(2): 105-111. doi: DOI:10.13442/j.gnss.1008-9268.2020.02.017

Research on the location algorithm of android mobile phone based on extended Kalman filter

doi: DOI:10.13442/j.gnss.1008-9268.2020.02.017
  • Publish Date: 2020-04-15
  • At present, there are more and more applications for mobile phone positioning, and many APPs (Applications) in the market will use the positioning function. However, most APPs use traditional positioning algorithms and can not meet the needs of people to obtain high-precision geographic location information in real time. At present, there is less research on the positioning method of the mobile phone's GPS chip raw data. Therefore, this paper mainly studies the feasibility and positioning algorithm of using the mobile phone's GPS raw data. Using the application program interface provided by the Android 7.0 system to obtain the raw data parameters of the GPS chip, according to the speed characteristics of the practical scene of the mobile phone, the static Kalman filtering for static scenes and the dynamic Kalman filtering positioning algorithm for low-speed scenes were designed and implemented respectively. Through static experiments as well as electric vehicle experiments and walking experiments, the experimental results show that compared with traditional positioning algorithms, the static Kalman filtering and dynamic Kalman filtering positioning algorithms designed in this paper have better positioning results and are closer to the actual walking route. It proves the feasibility of using mobile phone GPS raw data to locate, and also proves that the designed Kalman filter algorithm can improve the positioning accuracy. The research results of this paper provide theoretical basis for realizing static and dynamic highprecision mobile phone positioning algorithms.

     

  • loading
  • [1]
    高九连.基于物联网危险品定位追踪系统设计[J].电子技术与软件工程,2017(21):78.
    [2]
    郝晓平,黄晓雯,高志刚,等.无人机技术在油气管道巡护中的应用[J].油气储运,2019(8):955-960.
    [3]
    毕京学,甄杰,郭英.Android手机GPS和A-GPS定位精度分析[J].测绘通报,2016(7):10-13.
    [4]
    任超,吴伟,彭家頔,等.基于GPSOne技术的智能手机定位精度及可靠性研究[J].测绘通报,2012(2):54-55,84.
    [5]
    ZANDBERGEN P A. Accuracy of iPhone locations: a comparison of assisted GPS, WiFi and cellular positioning[J]. Transactions in gis, 2009, 13(S1):5-25.DOI:10.111/j.14679671.2009.01152.x.
    [6]
    ZANDBERGEN P A, BARBEAU S J. Positional accuracy of assisted GPS data from high-sensitivity GPS-enabled mobile phones[J]. Journal  of  navigation, 2011, 64(3):381-399.DOI: 10.1017/S0373463311000051.
    [7]
    朱会强.卫星导航中的一种实用权重估算模型[J].现代导航,2016,7(6):396-400.
    [8]
    杜晓辉,任章.基于卡尔曼滤波的GPS静态定位精度分析[J].全球定位系统,2008,33(5):47-51.
    [9]
    秦永元, 张洪钺, 汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社, 1998.
    [10]
    伍小洁,房建成.一种带速度观测量的GPS动态定位自适应卡尔曼滤波算法[J].中国惯性技术学报,2000,8(3):27-32.
    [11]
    徐宏宇,王浩,王尔申.基于扩展卡尔曼滤波的GPS定位数据处理方法研究[J].科学技术与工程,2012,12(31):8137-8142.
    [12]
    ZHANG Y, YU W H, HAN Y L,et al.Static and kinematic positioning performance of a low-cost real-time kinematic navigation system module[J].Advances in space research,2019,63(9):3029-3042.DOI: 10.1016/j.asr.2018.10.048.
    [13]
    孙茂军,李霞,赵利江.基于卡尔曼滤波方法的BDS动态伪距差分定位算法研究[J].全球定位系统,2019,44(3):69-73.
    [14]
    李川,魏世玉,刘星,等.顾及有色噪声的卡尔曼滤波在多路径误差削弱中的应用[J].全球定位系统,2019,44(1):62-67.
    [15]
    沈凯,管雪元,李文胜.扩展卡尔曼滤波在组合导航中的应用[J].传感器与微系统,2017,36(8):158-160.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (384) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return