GNSS World of China
Citation: | XU Xiaowen, TAO Yuan. BDS multipath errors reducing method based on EMD-LSTM coupled prediction model[J]. GNSS World of China, 2020, 45(2): 98-104. doi: DOI:10.13442/j.gnss.1008-9268.2020.02.016 |
[1] |
钟萍, 丁晓利, 郑大伟, 等. 一种基于交叉证认技术的自适应小波变换及其在削减GPS多路径误差中的应用[J]. 测绘学报, 2007,36 (3):279-285.
|
[2] |
COMP C J, AXELRADP. An adaptive SNR-based carrier phase multipath mitigation technique[J]. IEEE transactions on aerospace andelectron systems, 1998, 34(1):264-276. DOI: 10.1109/7.640284.
|
[3] |
ZHANG Z T, LI B F, GAO Y, et al. Real-time carrier phase multipath detection based on dual-frequency C/N0 data[J]. GPS solutions, 2018, 23(1). DOI: 10.1007/s10291-018-0799-6.
|
[4] |
ZHENG D W, ZHONG P M, DING X L, et al. Filtering GPS time-series using a vondrak filter and crossvalidation[J]. Journal of geodesy, 2005, 79(6-7):363-369. DOI: 10.1007/s00190-005-0474-x.
|
[5] |
戴吾蛟, 丁晓利, 朱建军, 等. 基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J].测绘学报, 2006,35 (4):321-327.
|
[6] |
刘超, 王坚, 许长辉, 等. 基于经验模态分解的GPS/伪卫星组合基线解算模型[J].武汉大学学报(信息科学版), 2010, 35(8):996-1000.
|
[7] |
DAI W J, SHI Q, CAI C S. Characteristics of the BDS carrier phase multipath and its mitigation methods in relative positioning[J]. Sensors, 2017, 17(4):796. DOI: 10.3390/s17040796.
|
[8] |
ZHNAG Q Z, YANG W, ZHANG S B, et al. Characteristics of BeiDou navigation satellite system multipath and its mitigation method based on Kalman filter and rauch-tung-striebel smoother[J]. Sensors, 2018, 18 (1):198. DOI: 10.3390/s18010198.
|
[9] |
陶远, 邓永春, 胡豪杰, 等. 小波分析和经验模态分解对BDS多路径误差削弱对比研究[J]. 全球定位系统, 2019,44(3):49-55.
|
[10] |
NAJIBI N, JIN S G. Physical reflectivity and polarization characteristics for snow and icecovered surfaces interacting with gps signals[J]. [JP2]Remotesensing. 2013(5): 4006-4030.DOI: 10.3390/rs5084006.
|
[11] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings mathematical, physical andengineering sciences, 1998, 454(1971): 903-995.DOI: 10.1098/rspa.1998.0193.
|
[12] |
COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. [JP]Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014(14): 19-29. DOI: 10.1016/j.bspc.2014.06.009.
|
[13] |
张敬霞. 层序地层格架下的煤系含气系统研究[D]. 徐州:中国矿业大学, 2018.
|
[14] |
HOCHREITER S, SCHMIDHUBER J. LSTM can solve hard long time lag problems[C]//Proceedings of the 9th international conference on neural information processing systems. 1997: 473-479. DOI: 10.5555/2998981.2999048.
|
[15] |
JIANG C H, CHEN Y W, CHEN S, et al. A mixed deep recurrent neural network for MEMS ggyroscope nnoise suuppressing[J]. Electronics, 2019, 8(2): 181. DOI: 10.3390/electronics8020181.
|
[16] |
SUNDERMEYER M, SCHLUTER R, NEY H. LSTM neural networks for language modeling[C]//Thirteenth Annual Conference of the International Speech Communication Association. 2012.DOI:10.1016/0165-6074(89)90269-x.
|