GNSS World of China

Volume 44 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
CHEN Jie, LIU Zhengcai, SU Ke, GUO Jiabing. Performance comparison of multi-GNSS and dual-frequency PPP under different models[J]. GNSS World of China, 2019, 44(6): 97-103. doi: DOI:10.13442/j.gnss.1008-9268.2019.06.016
Citation: CHEN Jie, LIU Zhengcai, SU Ke, GUO Jiabing. Performance comparison of multi-GNSS and dual-frequency PPP under different models[J]. GNSS World of China, 2019, 44(6): 97-103. doi: DOI:10.13442/j.gnss.1008-9268.2019.06.016

Performance comparison of multi-GNSS and dual-frequency PPP under different models

doi: DOI:10.13442/j.gnss.1008-9268.2019.06.016
  • Publish Date: 2019-12-15
  • With the data of BDS, GPS, Galileo and GLONASS of ten stations in MGEX in January 2018, the ionosphere-free model and the un-differenced and uncombined model are used to analyze the positioning performance of PPP in single-system, dual-system and four-system. The positioning performance analyzed in this paper includes convergence time and positioning accuracy. The experimental results show that the positioning performance of the two PPP models is equivalent, and they are better than the single-frequency PPP. The convergence time in the E, N, and U directions is shortened at about 20 minutes, and the positioning accuracy is improved at about 1.6 cm. Multi-GNSS can increase number of satellites, and improve inter-satellite geometry and  positioning performance of PPP. The GLONASS pseudorange IFB is estimated to use the pseudorange IFB model and the pseudorange IFB of each GLONASS satellite as the frequency quadratic polynomial model. The results show that the pseudorange IFB model of each GLONASS satellite is better than the pseudorange IFB for the frequency quadratic polynomial model. The two model of pseudorange IFB estimation have certain degree of improvement in PPP positioning performance compared to that ignoring the pseudorange IFB.

     

  • loading
  • [1]
    BISNATH S, GAO Y. Current state of Precise Point Positioning and future prospects and limitations[J]. Observing Our Changing Earth, 2009(133):615-643.
    [2]
    LI XX, ZHANG X H, REN X, et al, Precise positioning with current multiconstellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou[J]. Scientific Reports. 2015(5):8328.DOI: 10.1038/srepo08328.
    [3]
    ZHANG B C, OU J K, YUAN Y B, et al. Extraction of line-of-sight ionospheric observables from GPS data using Precise Point Positioning[J]. Science China Earth Science, 2012, 55(11):1919-1928. DOI: 10.1007/S11430-012-4454-8.
    [4]
    CAI CS, GAO Y. Precise Point Positioning using combined GPS and GLONASS observations[J].Journal of Global Positioning Systems, 2007,6(1):13-22.DOI: 10.5081/jgps.6.1.13.
    [5]
    DEFRAIGNE P, BAIRE Q. Combining GPS and GLONASS for time and frequency transfer[J]. Adv Space Research, 2011, 47(2):265-275.DOI: 10.1016/j.asr.2010.07.003.
    [6]
    AGGREY J, BISNATH S. Dependence of GLONASS pseudorange interfrequency bias on receiverantenna combination and impact on Precise Point Positioning[J]. Navigation: Journal of The Institute of Navigation, 2016, 63(4): 379-391.DOI: 10.1002/navi-168.
    [7]
    SHI C, YI W T, SONG W W, et al. GLONASS pseudorange interchannel biases and their effects on combined GPS/GLONASS Precise Point Positioning[J]. GPS Solutions, 2013, 17(4):439-451.DOI: 10.1007/s10291-013-0332-X.
    [8]
    GE M R, ZHANG H P, JIA X L, What is achievable with Current COMPASS constellations? [R] Proceedings of the 25 th International Technical Meeting of the Satellite Division of Institute of Navigation(ION GNSS), 2012,23(11): 331-339.
    [9]
    LI M, QU L, ZHAO Q, et al. Precise Point Positioning with the BeiDou navigation satellite system[J]. Sensors,2014, 14(1):927-943. DOI: 10.3390/s140100927.
    [10]
    KOUBA J, HEROUS P.  Precise Point Positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883.
    [11]
    DEO M, ElMOWAFY A. Triple-frequency GNSS models for PPP with float ambiguity estimation: performance comparison using GPS[J]. Survey review, 2016,50(360): 249-261.DOI: 10.1080/00396265.2016.1263179.
    [12]
    GUO F, ZHANG X, WANG J, et al. Modeling and assessment of triple-frequency BDS Precise Point Positioning[J]. Journal of geodesy, 2016, 90[JP3](11): 1223-1235. DOI: 10.1007/S00190-016-0920-Y.
    [13]
    ZHOU F, DONG D N, GE M R, et al. Simultaneous estimation of GLONASS pseudorange inter-frequency biases in Precise Point Positioning using undifferenced and uncombined observations[J]. GPS Solutions, 2018, 22(1): 19. DOI: 10.1007/21s10291-017-0685-7.
    [14]
    周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[D].上海:华东师范大学,2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (420) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return