GNSS World of China

Volume 44 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
CAI Fu, SUN Fuping, DAI Hailiang, ZHU Xinhui, ZHANG Longlong. Application of wavelet and Fourier transform in  time series analysis[J]. GNSS World of China, 2019, 44(4): 40-46. doi: DOI:10.13442/j.gnss.1008-9268.2019.04.006
Citation: CAI Fu, SUN Fuping, DAI Hailiang, ZHU Xinhui, ZHANG Longlong. Application of wavelet and Fourier transform in  time series analysis[J]. GNSS World of China, 2019, 44(4): 40-46. doi: DOI:10.13442/j.gnss.1008-9268.2019.04.006

Application of wavelet and Fourier transform in  time series analysis

doi: DOI:10.13442/j.gnss.1008-9268.2019.04.006
  • Publish Date: 2019-08-15
  • Exactly decomposing the feature information of time series is the precondition to nonlinear variation analysis. According to the characteristics of Fourier and wavelet transform, two methods are integrated and applied to analyze time series in time domain and frequency domain, and comprehensive algorithm of wavelet and Fourier transform is presented. Firstly, the wavelet function DB4 is used to decompose the coordinate time series into five layers to get the high frequency and low frequency parts. Then, the time domain waveforms of each harmonic and the possible sudden change information and intervals are obtained. Finally, the exact frequency and amplitude of each harmonic are obtained on the basis of fast Fourier transform. The results show that the low-frequency analysis can intuitively obtain the “annual term” and “two-year cycle term”, while the high-frequency analysis is consistent with the extraction of short-term cycles such as “semiannual term” and “one-season term”. So the method based on wavelet transform and Fourier transform has many advantages compared with Fourier transform and wavelet transform alone, it can effectively extract the feature information of station time series, and has a big research value.

     

  • loading
  • [1]
    姜卫平,李昭,刘鸿飞,等. 中国区域IGS基准站坐标时间序列非线性变化的成因分析[J].地球物理学报, 2013, 56(7): 2228-2237.
    [2]
    薛蕙, 罗红. 小波变换与傅里叶变换相结合的暂态谐波分析方法[J]. 中国农业大学学报, 2007, 12(6):89-92.
    [3]
    宁津生, 汪海洪, 罗志才. 小波分析在大地测量中的应用及其进展[J]. 武汉大学学报(信息科学版), 2004, 29(8):659-663.
    [4]
    KELLER W. A wavelet approach for the construction of multigrid solvers for large linear systems[M]//Vistas for Geodesy in the New Millennium, Springer, 2002:265270.DOI: 10.1007/978-3-662-04709-544.
    [5]
    GIBERT D, HOLSCHNEIDER M, MOUL J L L. Wavelet analysis of the Chandler wobble[J]. Journal of Geophysical Research, 1998, 103(B11):27069-27089.DOI: 10.1029/98JB02527.
    [6]
    黄声享, 刘经南, 柳响林. 小波分析在高层建筑动态监测中的应用[J]. 测绘学报, 2003, 32(2):153-157.
    [7]
    郭英起, 史大起, 黄声享,等. 高精度GPS测量中小波分析的应用[J]. 测绘工程, 2009, 18(3):58-60,64.
    [8]
    田亮. GPS测站坐标非线性变化规律分析与机制研究[D]. 郑州:解放军信息工程大学, 2011.
    [9]
    吴大正. 信号与线性系统分析[M].3版. 高等教育出版社, 1998.
    [10]
    潘泉. 小波滤波方法及应用[M]. 北京: 2005.
    [11]
    张勤, 蒋廷臣, 王秀萍. 小波变换在变形监测中的应用研究[J]. 测绘工程, 2005, 14(1):8-10.
    [12]
    YUE W, MENG X H, LI S L. Wavelet analysis and its application in geophysics of China[J]. Progress in Geophysics, 2012, 27(2):750760.DOI:10.6038/j.issn.10042903.2012.02.043.
    [13]
    WILLIAM C DONALD P. Wavelet methods for time series analysis[J]. Technometrics, 2016, 43(4):491.
    [14]
    文鸿雁. 基于小波理论的变形分析模型研究[D]. 武汉:武汉大学, 2004.
    [15]
    GHADERPOUR E, INCE E S, PAGIATAKIS S D. Least-squares cross-wavelet analysis and its applications in geophysical time series[J]. Journal of Geodesy, 2018,92(10):1223-1236.DOI:10.1007/S00190-018-1156-9.
    [16]
    范朋飞. 高精度GPS站点坐标时间序列分析与应用[D]. 西安:长安大学, 2013.
    [17]
    孙付平, 田亮, 门葆红,等. GPS测站周年运动与温度变化的相关性研究[J]. 测绘学报, 2012, 41(5):723-728.
    [18]
    ALTAMIMI Z, COLLILIEUX X. IGS contribution to the ITRF[J]. Journal of Geodesy, 2009, 83(3-4):375-383.DOI: 10.1007/S00190-008-0294-X.
    [19]
    刘向丽, 王旭朋. 基于小波分析的股指期货高频预测研究[J]. 系统工程理论与实践, 2015, 35(6):1425-1432.
    [20]
    尹咪咪. 心电信号分析处理及心肌梗塞疾病模型的建立[D].郑州:郑州大学,2016.
    [21]
    马社祥, 刘贵忠, 曾召华. 基于小波分析的非平稳时间序列分析与预测[J]. 系统工程学报, 2000, 51(4):305-311.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (542) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return