GNSS World of China

Volume 44 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
ZHANG Shisen, SUN Xiankun, YIN Ling, LI Shixi. GPS elevation time series prediction model based on wavelet  denoising technique and neural network[J]. GNSS World of China, 2019, 44(3): 117-125. doi: DOI:10.13442/j.gnss.1008-9268.2019.03.018
Citation: ZHANG Shisen, SUN Xiankun, YIN Ling, LI Shixi. GPS elevation time series prediction model based on wavelet  denoising technique and neural network[J]. GNSS World of China, 2019, 44(3): 117-125. doi: DOI:10.13442/j.gnss.1008-9268.2019.03.018

GPS elevation time series prediction model based on wavelet  denoising technique and neural network

doi: DOI:10.13442/j.gnss.1008-9268.2019.03.018
  • Publish Date: 2019-06-15
  • In the work of GPS time series data prediction, it is found that the noise contained in the time series data usually interferes with the results of data prediction. In order to minimize the negative impact of noise on prediction results in time series data as much as possible, a GPS time series data denoising prediction model is realized by combining lifting wavelet threshold denoising technology with long Short-Term Memory (LSTM). The model first uses lifting wavelet and smoothing threshold function to remove noise from GPS time series data before prediction, and then constructs a multi-layer LSTM neural network to predict time series data in one step. Compared with many time series prediction models, the results show that the proposed LSTM prediction model has strong applicability and higher accuracy for GPS time series prediction.

     

  • loading
  • [1]
    张晗, 王霞. 基于小波分解的网络流量时间序列建模与预测[J]. 计算机应用研究, 2012, 29(8):3134-3136.
    [2]
    王书芹, 华钢, 郝国生,等. 基于灰狼优化算法的长短期记忆网络在时间序列预测中的应用[J]. 中国科技论文, 2017,12(20):2309-2314.
    [3]
    吴志华, 丁杨斌, 申功勋. 非平稳时序分析在GPS伪距观测值建模中的应用[J]. 系统仿真学报, 2008, 20(16):4252-4254,4260.
    [4]
    魏鸿浩, 贾云峰. 一种非平稳非线性频谱占用度时间序列分析方法[J]. 电子学报, 2017, 45(8):2026-2030.
    [5]
    龙勇, 苏振宇, 汪於. 基于季节调整和BP神经网络的月度负荷预测[J]. 系统工程理论与实践, 2018, 38(4):1052-1060.
    [6]
    COULIBALY P, BALDWIN C K. Nonstationary hydrological time series forecasting using nonlinear dynamic methods[J]. Journal of Hydrology, 2005, 307(1-4):164-174. DOI: 10.1016/j.jhydrol.2004.10.008.
    [7]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.DOI:10.1162/neco.1997.9.8.1735·Source: PubMed.
    [8]
    GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-24797-2.
    [9]
    LOPEZ E, VALLE C, ALLENDE H, et al. Wind power forecasting based on echo state networks and long short-term memory[J]. Energies, 2018, 11(3):526. DOI: 10.3390/en11030526.
    [10]
    李基武, 符强, 孙希延,等. 一种改进扩展卡尔曼滤波算法的GPS多径抑制应用[J]. 测绘科学, 2018(6):167-172.
    [11]
    江虹, 苏阳. 一种改进的小波阈值函数去噪方法[J]. 激光与红外, 2016, 46(1):119-122.
    [12]
    MALLAT S. A theory for multiresolution vision model applied to astronomical images[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989(40):495-520.
    [13]
    CAO X, ZHANG Z. Method of radar signal de-noising based on lifting wavelet improved threshold[J]. Computer Engineering and Applications, 2012, 48(14):143-147.
    [14]
    周风波, 李长庚, 朱红求. 基于提升小波变换的阈值改进去噪算法在紫外可见光谱中的研究[J]. 光谱学与光谱分析, 2018,38(2):506-510.
    [15]
    李明迅, 孟相如, 袁荣坤,等. 融合提升小波降噪和LSSVM的网络流量在线预测[J]. 计算机应用, 2012, 32(2):340-346,346.
    [16]
    方志军, 石恒麟, 毛微微. 基于小波降噪的RLS算法在股票预测中的应用[C]//International Conference on Management Science and Engineering. 2010.
    [17]
    DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455. DOI: 10.1093/biomet/81.3.425.
    [18]
    DONOOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995, 41(3):613-627. DOI: 10.1109/18.382009.
    [19]
    符养. 中国大陆现今地壳形变与GPS坐标时间序列分析[D].上海:中国科学院研究生院(上海天文台), 2002.
    [20]
    张鹏, 蒋志浩, 秘金钟,等. 我国GPS跟踪站数据处理与时间序列特征分析[J]. 武汉大学学报(信息科学版), 2007, 32(3):251-254.
    [21]
    张剑, 屈丹, 李真. 基于词向量特征的循环神经网络语言模型[J]. 模式识别与人工智能, 2015, 28(4): 299-305.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (478) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return