GNSS World of China

Volume 44 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
DENG Yongchun, XU Yue, XU Dandan, JIA Xue, TIAN Xiancai. GNSS time series prediction based on support vector machine[J]. GNSS World of China, 2019, 44(2): 70-75. doi: DOI:10.13442/j.gnss.1008-9268.2019.02.010
Citation: DENG Yongchun, XU Yue, XU Dandan, JIA Xue, TIAN Xiancai. GNSS time series prediction based on support vector machine[J]. GNSS World of China, 2019, 44(2): 70-75. doi: DOI:10.13442/j.gnss.1008-9268.2019.02.010

GNSS time series prediction based on support vector machine

doi: DOI:10.13442/j.gnss.1008-9268.2019.02.010
  • Publish Date: 2019-04-15
  • In order to predict the global navigation satellite system (GNSS) time series, under the theoretical framework of deep learning, the traditional empirical risk minimization prediction model has low error, low generalization performance and large dependence on historical data. A time series prediction model is proposed based on support vector machine (SVM) with the principle of structural risk minimization. compared with the multi-layer BP neural network prediction model prediction, the results prove that the SVM prediction model has better time series prediction effect.

     

  • loading
  • [1]
    HOFMAN-WELLENHOF B, LICHTENEGGER H, WASLE E. GNSS-Global navigation satellite systems[M]. Springer, 2007.
    [2]
    何正义, 曾宪华, 曲省卫, 等.基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016,46(6):40-47.
    [3]
    VAPNIK V. SVM method of estimating density, conditional probability, and conditional density[C]//IEEE International Symposium on Circuits & Systems. IEEE, 2000.DOI: 10.1109/ISCAS.2000.856437.
    [4]
    钟颖, 汪秉文. 基于遗传算法的BP神经网络时间序列预测模型[J]. 系统工程与电子技术, 2002, 24(4):9-11.
    [5]
    孙志华, 沈小厚. 基于RBF核函数的SVM在容量预测中的应用[J]. 经营管理者, 2010(6):394-395.
    [6]
    王春燕, 夏乐天, 孙毓蔓. 基于不同核函数的SVM用于径流预报的比较[J]. 人民黄河, 2010, 32(9):35-36,39.
    [7]
    罗泽举, 朱思铭. 新型ε-不敏感损失函数支持向量诱导回归算法及售后服务数据模型预测系统[J]. 计算机科学, 2005, 32(8):138-141,154.
    [8]
    刘子阳. 支持向量回归算法及应用研究[D]. 大连:大连理工大学, 2007.
    [9]
    张国云. 支持向量机算法及其应用研究[D]. 长沙:湖南大学, 2006.
    [10]
    刘洛霞. 基于SVM的多变量函数回归分析研究(英文)[J]. 电光与控制, 2013, 20(6):50-57.
    [11]
    潘常春, 杨根科, 孙凯, 等. 带最小批量约束的计划问题及其拉格朗日松弛算法[J]. 控制理论与应用, 2009, 26(2):133-138.
    [12]
    曹健, 孙世宇, 段修生, 等. 基于KKT条件的SVM增量学习算法[J]. 火力与指挥控制, 2014,39(7):139-143.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (293) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return