GNSS World of China

Volume 45 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
WU Tangting, LIU Lijing, ZHAO Baogui, LU Liguo. GNSS ambiguity integer estimation methods graph visualization software design and application analysis[J]. GNSS World of China, 2020, 45(5): 20-26. doi: 10.13442/j.gnss.1008-9268.2020.05.004
Citation: WU Tangting, LIU Lijing, ZHAO Baogui, LU Liguo. GNSS ambiguity integer estimation methods graph visualization software design and application analysis[J]. GNSS World of China, 2020, 45(5): 20-26. doi: 10.13442/j.gnss.1008-9268.2020.05.004

GNSS ambiguity integer estimation methods graph visualization software design and application analysis

doi: 10.13442/j.gnss.1008-9268.2020.05.004
  • Publish Date: 2021-02-24
  • The key of high-precision GNSS positioning is fast and accurate ambiguity estimation.There are three kinds of integer estimation methods which are commonly used for ambiguity estimation,including Integer Rounding, Integer Bootstrapping and Integer Least-Squares.Although it is easy to realize the three kinds of estimation methods, there is little research on how to construct the geometry of integer estimate values based on the ambiguity float solution and precision,which is not conducive for us to intuitively understand the process of integer estimation.Therefore, this paper theoretically gives the general forms of the three kinds of estimation methods, and then designs a set of visualization analysis software for the construction of two-dimensional geometric figures based on MATLAB GUI. The functions of the software include pull-in region construction, map graph construction, Monte Carlo simulation and success rate calculation. The experimental results show that the software designed in this paper can intuitively express the processes of the three kinds of integer estimation and its resolution performance in terms of geometry.

     

  • loading
  • [1]
    刘经南, 于兴旺, 张小红. 基于格论的GNSS模糊度解算[J]. 测绘学报, 2012, 41(5): 636-645.
    [2]
    卢立果. GNSS整数最小二乘模糊度解算理论与方法研究[J]. 测绘学报,2017,46(19):1204.
    [3]
    王建敏, 李亚博, 马天明, 等. 大范围网络RTK基准站间整周模糊度实时快速解算[J]. 测绘通报, 2017(10): 7-11.
    [4]
    祝会忠, 李军, 蔚泽然, 等. 长距离GPS/BDS参考站网多频载波相位整周模糊度解算方法[J]. 测绘学报, 2020, 49(3): 300-311.
    [5]
    TEUNISSEN P J G. On the integer normal distribution of the GPS ambiguities[J/OL]. Artificial satellites, 1998, 33(2):49-64.http://hdl.handle.net/20.500.11937/39304.
    [6]
    TEUNISSEN P J G. Towards a unified theory of GNSS ambiguity resolution[J/OL]. Journal of global positioning systems, 2003, 2(1): 1-12.http://file.scrip.org/pdf/nav20090100011_34702736.pdf.
    [7]
    VERHAGEN S, LI B F, TEUNISSEN P J G. Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications[J]. Computers & geosciences, 2013, 54: 361-376.DOI: 10.1016/J.CAGEO.2013.01.014.
    [8]
    刘经南, 邓辰龙, 唐卫明. GNSS整周模糊度确认理论方法研究进展[J]. 武汉大学学报(信息科学版), 2014(9): 1-3.
    [9]
    吴泽民, 边少锋, 向才炳, 等. 三种GNSS模糊度解算方法成功率比较[J]. 海洋测绘, 2014, 34(6):25-28.
    [10]
    宋福成. GNSS整周模糊度估计方法研究[D]. 北京:中国矿业大学(北京), 2016.
    [11]
    VERHAGEN S, LI B F. LAMBDA software package: MATLAB implementation, version 3.0[S/OL]. https://www.researchgate.net/publication/236213370_LAMBDA_Software_package_Matlab_implementation_Version_30.
    [12]
    TEUNISSEN P J G. Success probability of integer GPS ambiguity rounding and bootstrapping[J]. Journal of geodesy, 1998, 72(10): 606-612.DOI: 10.1007/s001900050199.
    [13]
    TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation[J]. Journal of geodesy, 1995(70): 65-82.DOI: 10.1007/BF00863419.
    [14]
    TEUNISSEN P J G. An optimality property of the integer leastsquares estimator[J]. Journal of geodesy, 1999, 73(11): 587-593.DOI: 10.1007/s001900050269.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (573) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return