GNSS World of China

Volume 45 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
LI Song, TANG Xiaomei, SUN Pengyue, ZHANG Ke, WANG Feixue. Maximum correntropy Kalman filter for GNSS/INS tightly-coupled integration[J]. GNSS World of China, 2020, 45(4): 1-8. doi: 10.13442/j.gnss.1008-9268.2020.04.001
Citation: LI Song, TANG Xiaomei, SUN Pengyue, ZHANG Ke, WANG Feixue. Maximum correntropy Kalman filter for GNSS/INS tightly-coupled integration[J]. GNSS World of China, 2020, 45(4): 1-8. doi: 10.13442/j.gnss.1008-9268.2020.04.001

Maximum correntropy Kalman filter for GNSS/INS tightly-coupled integration

doi: 10.13442/j.gnss.1008-9268.2020.04.001
  • Publish Date: 2020-08-15
  • In real application, the measurement noise is easily affected by gross errors and becomes nonGaussian distribution, resulting in the performance of the traditional Kalman filter (KF) being degraded significantly. In order to deal with this problem, the maximum correntropy Kalman filter (MCKF) is proposed based on the maximum correntropy criterion (MCC) and M-estimation. Compared with KF, the proposed filter can assign less weight to the abnormal measurements to reduce its influence on the state estimation, and compared with the Huber-based Kalman filter (HKF), it can make more effective use of measurement information, thereby the proposed filter is more robust. The tightly coupled GNSS/INS (global navigation satellite system/inertial navigation system) carmounted experiments were carried out to verify the performance of the proposed filter. The results show that the KF and HKF achieve bad estimation accuracy due to the poor quality of the original measurements of the GNSS such as the pseudorange and pseudorange rate. And the proposed MCKF can effectively suppress the influence of abnormal measurements, resulting in faster convergence and higher estimation accuracy than existing filters.

     

  • loading
  • [1]
    NOURMOHAMMADI H, KEIGHOBADI J. Design and experimental evaluation of indirect centralized and direct decentralized integration scheme for low-cost INS/GNSS system[J]. GPS solutions, 2018, 22(3): 65-82.DOI: 10.1007/S10291-018-0732-2.
    [2]
    KBAYER N, SAHMOUDI M. Performances analysis of GNSS NLOS bias correction in urban environment using a three-dimensional city model and GNSS simulator[J]. IEEE transactions on aerospace and electronic systems, 2018, 54(4): 1799-1814.
    [3]
    HUANG Y L, ZHANG Y G, BO X, et al. A new outlier-robust student's based Gaussian approximate filter for cooperative localization[J]. IEEE/ASME transactions on mechatronics, 2017, 22(5): 2380-2386.DOI: 10.1109/TMECH.2007.2744651.
    [4]
    BILIK I, TABRIKIAN J. MMSE-based filtering in presence of non-Gaussian system and measurement noise[J]. IEEE transactions on aerospace and electronic systems, 2010, 46(3): 1153-1170.DOI: 10.1109/TAES.2010.5545.180.
    [5]
    付晨. 多传感器融合导航的关键技术研究[D]. 成都: 电子科技大学, 2014.
    [6]
    郭承军. 多源组合导航系统信息融合关键技术研究[D]. 成都: 电子科技大学, 2018.
    [7]
    ITO K, XIONG K. Gaussian filters for nonlinear filtering problems[J]. IEEE transactions on automatic control, 2000, 45(5): 910-927. DOI: 10.1109/9.855552.
    [8]
    储超, 黄亮, 杜仲进, 等. 抗差估计在RTK/INS紧组合中的应用研究[J]. 全球定位系统, 2019, 44(5): 18-25.
    [9]
    HUBER P J. Robust statistics[M]. New York: Wiley, 1981.
    [10]
    IZANLOO R, FAKOORIAN S A, YAZDI H S, et al. Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise[C]//2016 Annual Conference on Information Science and Systems(CISS), 2016.DOI: 10.1109/CISS.2016.7460553.
    [11]
    KULIKOVA M V. Square-root algorithms for maximum correntropy estimation of linear discrete-time systems in presence of non-Gaussian noise[J]. Systems and control letters, 2017(108): 8-15.DOI: 10.1016/j.sysconle.2017.07.016.
    [12]
    全伟, 刘百奇, 宫晓琳. 惯性/天文/卫星组合导航技术[M]. 北京: 国防工业出版社, 2011.
    [13]
    WANG M S, WU W Q, ZHOU P Y, et al. State transformation extended Kalman filter for GPS/SINS tightly coupled integration[J]. GPS solutions, 2018, 22(4): 112-123.DOI: 10.1007/S1021-018-0773-3.
    [14]
    KARAMAT T B, ATIA M M, NOURELDIN A. An enhanced error model for EKF-based tightly-coupled integration of GPS and land vehicle's motion sensors[J]. Sensors, 2015, 15(9): 24269-24296.DOI: 10.3390/S150924269.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (931) PDF downloads(181) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return