GNSS World of China

Volume 43 Issue 2
Apr.  2018
Turn off MathJax
Article Contents
QI Xiandong, GUO Ying, SUN Yuxi, JI Xianlei. Analysis of Heading Correction Algorithm Based on Quaternion Method[J]. GNSS World of China, 2018, 43(2): 7-11. doi: 10.13442/j.gnss.1008-9268.2018.02.002
Citation: QI Xiandong, GUO Ying, SUN Yuxi, JI Xianlei. Analysis of Heading Correction Algorithm Based on Quaternion Method[J]. GNSS World of China, 2018, 43(2): 7-11. doi: 10.13442/j.gnss.1008-9268.2018.02.002

Analysis of Heading Correction Algorithm Based on Quaternion Method

doi: 10.13442/j.gnss.1008-9268.2018.02.002
  • Publish Date: 2018-07-05
  •   At present, the attitude solution for carrier has become a hot topic for precision navigation ofStrapdown Inertial Navigation System.In order to reduce the heading error caused by the drift of the gyro, an improved heading correction method based on Heuristic Drift Eliminationwas proposed. This method uses the quaternion to solve the carrier's heading, uses the pedestrian's heading angle deviation in the indoor environment to directly correct the pedestrian's heading, and then calculates the pedestrian heading trajectory.The experiment uses low-cost smart phones to compare and analyze the accuracy of different sampling frequencies and second-order Runge-Kutta method and fourth-order Runge-Kutta method to update the quaternion to solve the heading angle, it draw the conclusion that increasing the sampling frequency can reduce the heading error and improve the positioning accuracy.Experimental results show that this algorithm has certain reference value for navigation and positioning research.

     

  • loading
  • [1]
    张荣辉,贾宏光,陈涛,等. 基于四元数法的捷联式惯性导航系统的姿态解算[J]. 光学精密工程, 2008, 16(10):1963-1970.
    [2]
    王立波. 捷联惯导系统设计与数据处理技术研究[D]. 西安:西安电子科技大学, 2011.
    [3]
    黄国英. 微分方程初值问题的加权改进欧拉数值解法[J]. 成功:教育版, 2011(8):287-287.
    [4]
    李连仲,王小虎,蔡述江. 捷联惯性导航、制导系统中方向余弦矩阵的递推算法[J]. 宇航学报, 2006, 27(3):349-353.
    [5]
    王彤,马建仓,秦涛,等. 基于旋转四元数的姿态解算算法[J]. 弹箭与制导学报, 2014,34(3):15-16.
    [6]
    杨阳. 龙格库塔法求模糊微分方程的数值解[D]. 哈尔滨:哈尔滨工业大学, 2015.
    [7]
    张丽娟,张翔,关天冶. 一阶常微分方程初值问题的数值算法[J]. 通化师范学院学报, 2017, 38(8):22-24.
    [8]
    冯建强,孙诗一. 四阶龙格——库塔法的原理及其应用[J]. 数学学习与研究, 2017(17):3-5.
    [9]
    曾庆军,刘慧婷,张明. 基于HDR的陀螺仪随机漂移分析与处理[J]. 江苏大学学报(自然科学版), 2016, 37(3): 332-336.
    [10]
    BORENSTEIN J, OJEDA L. Heuristic drift elimination for personnel tracking systems[J]. Journal of Navigation, 2010, 63(4): 591-606.
    [11]
    楼喜中,周乐宇,叶敏展, 等. 基于角度的HDE算法在室内行人航迹定位中的研究[J]. 传感技术学报, 2015,28(4): 598-602.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (612) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return