GNSS World of China

Turn off MathJax
Article Contents
WANG Qining, WANG Le, LAI Wen, SHE Haonan. Precision orbit determination research of LEO satellite simulated downlink data[J]. GNSS World of China. doi: 10.12265/j.gnss.2024148
Citation: WANG Qining, WANG Le, LAI Wen, SHE Haonan. Precision orbit determination research of LEO satellite simulated downlink data[J]. GNSS World of China. doi: 10.12265/j.gnss.2024148

Precision orbit determination research of LEO satellite simulated downlink data

doi: 10.12265/j.gnss.2024148
  • Received Date: 2024-08-28
    Available Online: 2024-11-11
  • This study focuses on precision orbit determination utilizing simulated downlink data from low earth orbit (LEO) satellites. A comprehensive investigation is conducted on the orbit determination performance, considering a simulated Walker 90/10/1 LEO satellite constellation with an orbit altitude of 1 000 km and an inclination angle of 48°, along with 150 ground stations equipped with corresponding orbit clocks and observation data. The observational data from global station networks, featuring station numbers ranging from 60 to 150, are utilized for precise orbit determination of LEO satellites, followed by a detailed analysis of orbit accuracy and station position dilution of precision (SPDOP) values. Results indicate a significant enhancement in LEO satellite orbit accuracy from 117.5 mm to 39.8 mm upon increasing the number of stations from 60 to 150. Furthermore, sparse station distribution leads to a rapid degradation in LEO satellite orbit accuracy. The study underscores the effectiveness of augmenting the number of ground stations in improving both visible station SPDOP and LEO satellite orbit accuracy over terrestrial regions. However, due to the constrained tracking range of stations, enhancing the orbit accuracy of LEO satellites in marine regions remains challenging.

     

  • loading
  • [1]
    张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. DOI: 10.11947/j.AGCS.2019.20190176
    [2]
    “中国星网”成立![EB/OL]. [2024-04-26]. https://rfic.cuit.edu.cn/info/2095/1173.htm.2021
    [3]
    REID T G R, NEISH A M, WALTER T, et al. Broadband LEO constellations for navigation[J]. Journal of the institute of navigation, 2018, 65(2): 205-220. DOI: 10.1002/navi.234
    [4]
    ENGE P, FERRELL B, BENNETT J, et al. Orbital diversity for satellite navigation[C]//Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), 2012: 3834-3846.
    [5]
    JOERGER M, GRATTON L, PERVAN B, et al. Analysis of iridium-augmented GPS for floating carrier phase positioning[J]. Annual of navigation, 2010, 57(2): 137-160. DOI: 10.1002/j.2161-4296.2010.tb01773.x
    [6]
    LI X X, MA F J, LI X, et al. LEO constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of geodesy, 2018, 93(5): 749-764. DOI: 10.1007/s00190-018-1195-2
    [7]
    杨宇飞, 杨元喜, 徐君毅, 等. 低轨卫星对导航卫星星座轨道测定的增强作用[J]. 武汉大学学报(信息科学版), 2020, 45(1): 46-52.
    [8]
    MICHALAK G, GLASER S, NEUMAYER K H, et al. Precise orbit and earth parameter determination supported by LEO satellites, inter-satellite links and synchronized clocks of a future GNSS[J]. Advances in space research, 2021, 68(12): 4753-4782. DOI: 10.1016/j.asr.2021.03.008
    [9]
    李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1501-1505.
    [10]
    聂欣, 郑晋军, 范本尧. 低轨卫星导航系统技术发展研究[J]. 航天器工程, 2022, 31(1): 116-124. DOI: 10.3969/j.issn.1673-8748.2022.01.016
    [11]
    新时代的中国北斗[EB/OL]. https://www.gov.cn/zhengce/2022-11/04/content_5724523.htm
    [12]
    KONIG R, REIGBER C, ZHU S Y. Dynamic model orbits and Earth system parameters from combined GPS and LEO data[J]. Advances in space research, 2005, 36(3): 431-437. DOI: 10.1016/j.asr.2005.03.064
    [13]
    ZHU S X, REIGBER C, KONIG R. Integrated adjustment of CHAMP, GRACE, and GPS data[J]. Journal of geodesy, 2004, 78(1): 103-108. DOI: 10.1007/s00190-004-0379-0
    [14]
    LI X X, JIANG Z H, MA F J, et al. LEO precise orbit determination with inter-satellite links[J]. Remote sens, 2019, 11(18): 2117. DOI: 10.3390/rs11182117
    [15]
    HE X N, HUGENTOBLER U, SCHLICHT A, et al. Precise orbit determination for a large LEO constellation with inter-satellite links and the measurements from different ground networks: a simulation study[J]. Satellite navigation, 2022, 3(1): 1-13. DOI: 10.1186/s43020-022-00083-1
    [16]
    张勤, 王乐, 赖文, 等. 低轨增强北斗的星地一体化系统仿真及综合性能评估研究[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1863-1875.
    [17]
    马福建. 低轨导航增强星座优化与信号频率设计研究[D]. 武汉: 武汉大学, 2021.
    [18]
    赵齐乐. GPS导航星座及低轨卫星的精密定轨理论和软件研究[D]. 武汉: 武汉大学, 2004.
    [19]
    田野, 张立新, 边朗. 低轨导航增强卫星星座设计[J]. 中国空间科学技术, 2019, 39(6): 55-61.
    [20]
    ZHANG T J, SHEN H X, LI Z, et al. Restricted constellation design for regional navigation augmentation[J]. Acta astronautica, 2018(150): 231-239. DOI: 10.1016/j.actaastro.2018.04.044
    [21]
    MA F J, ZHANG X H, LI X X, et al. Hybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation system[J]. GPS solutions, 2020, 24(2). DOI: 10.1007/s10291-020-00977-0
    [22]
    徐文康, 党亚民, 齐珂, 等. 地面观测站选取对GNSS卫星定轨精度影响分析[C]//第十三届中国卫星导航年会论文集——S04星轨道与精密定位, 2022: 6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return