GNSS World of China
Citation: | LIN Ziyang, CHEN Longjiang, JIN Ruimin, OU Ming, YANG Huiyun, JI Guangwang, CUI Xiang, GU Mingyue. A random forest-based prediction model for ionospheric foF2 in China and surrounding regions[J]. GNSS World of China. doi: 10.12265/j.gnss.2024140 |
[1] |
韩喜豪, 郑帅勇, 杨建雷, 等. 卫星导航中电离层误差校正技术现状与发展[J]. 全球定位系统, 2024, 49(2): 111-126. DOI: 10.12265/j.gnss.2023105
|
[2] |
刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究——基于系统可靠性工程的视角[J]. 全球定位系统, 2023, 48(1): 3-13. DOI: 10.12265/j.gnss.2022209
|
[3] |
BENT R B, LLEWELLYN S K, NESTERCZUK G, et al. The development of a highly-successful worldwide empirical ionospheric model and its use in certain aspects of space communications and worldwide total electron content investigations[C]//Effect of the Ionosphere on Space Systems & Communications, 1975: 12-28.
|
[4] |
NAVA B, COISSON P, RADICELLA S M. A new version of the NeQuick ionosphere electron density model[J]. Journal of atmospheric and solar-terrestrial physics, 2008, 70(15): 1856-1862. DOI: 10.1016/j.jastp.2008.01.015
|
[5] |
BILITZA D, PEZZOPANE M, TRUHILK V, et al. The international reference ionosphere model: a review and description of an ionospheric benchmark[J]. Reviews of geophysics, 2022, 60(4). DOI: 10.1029/2022RG000792
|
[6] |
HUANG F, RUAN H B, LEI J H, et al. Empirical models of foF2 and hmF2 reconstituted by global ionosonde and reanalysis data and COSMIC observations[J]. Space weather, 2024, 22(4): e2023SW003848. DOI: 10.1029/2023SW00384
|
[7] |
陈龙江, 甄卫民, 欧明, 等. 一种基于分步线性最优估计的全球中低纬区域电离层foF2重构方法[J]. 电波科学学报, 2021, 36(1): 36-42.
|
[8] |
JONES W B, GALLET R M. Representation of diurnal and geographic variations of ionospheric data by numerical methods[J]. Journal of research of the national bureau of standards, 1962, 66(D): 419. DOI: 10.6028/jres.066d.043
|
[9] |
RUSH C M, POKEMPNER M, AANDERSON D N, et al. Improving ionospheric maps using theoretically derived values of foF2[J]. Radio science, 1983, 18(1): 195-107. DOI: 10.1029/RS018i001p00095
|
[10] |
RUSH C M, POKEMPNER M, ANDERSON D N, et al. Maps of foF2 derived from observations and theoretical data[J]. Radio science, 1984, 19(4): 1083-1097. DOI: 10.1029/RS019i004p01083
|
[11] |
E. A, ZHANG D H, XIAO Z, et al. Modeling ionospheric foF2 by using empirical orthogonal function analysis[J]. Annales geophysicae, 2011, 29(8): 1501-1515. DOI: 10.5194/ANGEO-29-1501-2011
|
[12] |
HOQUE M M, JAKOWSKI N. A new global empirical NmF2 model for operational use in radio systems[J]. Radio science, 2011, 46(6): 1-13. DOI: 10.1029/2011RS004807
|
[13] |
陈林峰, 程云鹏. 基于COSMIC数据开展全球电离层foF2建模及变化特征研究[J]. 科学技术与工程, 2022, 22(34): 15036-15042. DOI: 10.3969/j.issn.1671-1815.2022.34.007
|
[14] |
LIU Z D, FANG H X, HOQUE M M, et al. A new empirical model of NmF2 based on CHAMP, GRACE, and COSMIC radio occultation[J]. Remote sensing, 2019, 11(11): 1386. DOI: 10.3390/rs11111386
|
[15] |
THEMENS D R, JAYACHANDRAN P T, GALKIN I, et al. The empirical Canadian high arctic ionospheric model (E-CHAIM): NmF2 and hmF2[J]. Journal of geophysical research: space physics, 2017, 122(8): 9015-9031. DOI: 10.1002/2017JA024398
|
[16] |
GOWTAM V S, TULASI R S T. An artificial neural network-based ionospheric model to predict NmF2 and hmF2 using long-term data set of FORMOSAT-3/COSMIC radio occultation observations: preliminary results[J]. Journal of geophysical research: space physics, 2017, 122(11): 11743-11755. DOI: 10.1002/2017JA024795
|
[17] |
TULASI R S, SAI G V, ARKA M, et al. The improved two-dimensional artificial neural network-based ionospheric model (ANNIM)[J]. Journal of geophysical research: space physics, 2018, 123(7): 5807-5820. DOI: 10.1029/2018JA025559
|
[18] |
LI W, HE C C, HU A D, et al. A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network[J]. Advances in space research, 2021, 67(1): 20-34. DOI: 10.1016/j.asr.2020.07.032
|
[19] |
WANG R P, ZHOU C, DENG Z X, et al. Predicting foF2 in the China region using the neural networks improved by the genetic algorithm[J]. Journal of atmospheric and solar-terrestrial physics, 2013(92): 7-17. DOI: 10.1016/j.jastp.2012.09.010
|
[20] |
宋锐. 中国区域电离层foF2建模及其应用研究[D]. 北京: 中国地震局地震预测研究所, 2018.
|
[21] |
GOWTAM V S, THLASI R S, RENINISCH B, et al. A new artificial neural network-based global three-dimensional ionospheric model (ANNIM-3D) using long-term ionospheric observations: preliminary results[J]. Journal of geophysical research: space physics, 2019, 124(6): 4639-4657. DOI: 10.1029/2019JA026540
|
[22] |
LI W, ZHAO D S, HE C Y, et al. Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and digisonde[J]. Space weather, 2021, 19(3). DOI: 10.1029/2020sw002605
|
[23] |
HABARULEMA J B, OKOH D, BURESOVA D, et al. A global 3-D electron density reconstruction model based on radio occultation data and neural networks[J]. Journal of atmospheric and solar-terrestrial physics. 2021, 221(1): 105702. DOI: 10.1016/j.jastp.2021.105702
|
[24] |
YANG D, FANG H X. A low-latitude three-dimensional ionospheric electron density model based on radio occultation data using artificial neural networks with prior knowledge[J]. Space weather, 2023, 21(1). DOI: 10.1029/2022sw003299
|
[25] |
HABARULEMA J B, OKOH D, BURESOVA D, et al. A storm-time global electron density reconstruction model in three-dimensions based on artificial neural networks[J]. Advances in space research, 2024. DOI: 10.1016/j.asr.2024.02.014
|
[26] |
ZHOU Y, LIU J, LI S H, et al. Ionospheric TEC prediction based on ensemble learning models[J]. Space weather, 2024, 22(3): e2023SW003790. DOI: 10.1029/2023SW003790
|
[27] |
LINTY N, FARASIN A , FAVENZA A, et al. Detection of GNSS ionospheric scintillations based on machine learning decision tree[J]. IEEE transactions on aerospace and electronic systems, 2018, 55(1): 303-317. DOI: 10.1109/TAES.2018.2850385
|
[28] |
YANG K F, CHU Y H, SU C L, et al. An examination of FORMOSAT-3/COSMIC ionospheric electron density profile: Data quality criteria and comparisons with the IRI model[J]. Terrestrial, atmospheric and oceanic sciences, 2009, 20(1): 193-206. DOI: 10.3319/TAO.2007.10.05.01(F3C
|
[29] |
BREIMAN L. Random forests[J]. Machine learning, 2001(45): 5-32. DOI: 10.1023/A:1010933404324
|
[30] |
WILLISCROFT L A, POOLE A W V. Neural networks, foF2, sunspot number and magnetic activity[J]. Geophysical research letters, 1996, 23(24): 3659-3662. DOI: 10.1029/96GL03472
|