GNSS World of China

Turn off MathJax
Article Contents
WANG Ershen, CHEN Yitong, YU Tengli, ZHANG Jian, YANG Jian, XU Song, WANG Yongkang. Performance evaluation method and flight test analysis of BeiDou satellite-based augmentation dual-frequency service[J]. GNSS World of China. doi: 10.12265/j.gnss.2024087
Citation: WANG Ershen, CHEN Yitong, YU Tengli, ZHANG Jian, YANG Jian, XU Song, WANG Yongkang. Performance evaluation method and flight test analysis of BeiDou satellite-based augmentation dual-frequency service[J]. GNSS World of China. doi: 10.12265/j.gnss.2024087

Performance evaluation method and flight test analysis of BeiDou satellite-based augmentation dual-frequency service

doi: 10.12265/j.gnss.2024087
  • Received Date: 2024-05-09
    Available Online: 2024-11-07
  • The BeiDou satellite-based augmentation system (BDSBAS) realizes simultaneous augmentation of multiple satellite constellations by broadcasting dual-frequency augmentation messages through B2a signal to provide users with more accurate and reliable positioning and navigation services. In order to meet the demand of civil aviation for the positioning performance of BDSBAS in the approach phase, this paper researches the BeiDou satellite-based augmentation dual-frequency positioning algorithm, and evaluates the performance of the dual-frequency service of BDSBAS based on the data of the static station and the flight data in terms of the accuracy and integrity. The static experiment data were collected from the BDSBAS site in Beijing on January 17, 2024, for the whole day. The flight measurement data were collected from the aviation test conducted at Faku Caihu General Aviation Airport in Shenyang. The static evaluation results show that the positioning errors of Beijing, Xi’an and Jiayuguan stations were relatively stable during the evaluation period. The horizontal positioning accuracy(95%) was better than 2 m; the vertical positioning accuracy(95%) was better than 3 m. Horizontal availability was better than 99.998% and vertical availability was better than 99.984%. The results of the flight test show that the horizontal and vertical accuracy during the test were 1.8269 m and 2.6014 m, respectively, and no integrity event occurred. The static and dynamic evaluation results met the requirements of the International Civil Aviation Organization (ICAO) APV-I indexes for accuracy and integrity. The results of this study are meaningful for the performance evaluation of BDSBAS.

     

  • loading
  • [1]
    CHEN Y, GAO W G, CHEN X, et al. Advances of SBAS authentication technologies[J]. Satellite navigation, 2021, 2(12): 1-7. DOI: 10.1186/s43020-021-00043-1
    [2]
    YANG Y X, DING Q, GAO W G, et al. Principle and performance of BDSBAS and PPP-B2b of BDS-3[J]. Satellite navigation, 2022, 3(1). DOI: 10.1186/s43020-022-00066-2
    [3]
    WALTER T, SHALLBETG K, ALTSHULER E, et al. WAAS at 15[J]. Journal of the institute of navigation, 2018, 65(4): 581-600. DOI: 10.1002/navi.252
    [4]
    BAUER F, GREZE G, HADDAD F, et al. A study on a New EGNOS V2 release with enhanced system performances[C]//Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), 2019: 902-919. DOI: 10.33012/2019.16944
    [5]
    TSAI Y F, LOW K S. Performance assessment on expanding SBAS service areas of GAGAN and MSAS to Singapore region[C]//2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014. DOI: 10.1109/PLANS.2014.6851433
    [6]
    KITAMURA M, SAKAI T. DFMC SBAS prototype system performance using global monitoring stations of QZSS[C]//Proceedings of the ION 2019 Pacific PNT Meeting, 2019: 382-387. DOI: 10.33012/2019.16789
    [7]
    WANG H W, WANG Z P, FANG K, et al. An airborne ionospheric correction approach for single-frequency BDSBAS[J]. IEEE transactions on geoscience and remote sensing, 2023(61): 1-20. DOI: 10.1109/TGRS.2023.3315743
    [8]
    郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展[J]. 全球定位系统, 2019, 44(2): 1-12.
    [9]
    刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究——基于系统可靠性工程的视角[J]. 全球定位系统, 2023, 48(1): 3-13.
    [10]
    邵搏, 耿永超, 丁群, 等. 国际星基增强系统综述[J]. 现代导航, 2017, 8(3): 157-161.
    [11]
    中国民用航空局. 中国民航北斗卫星导航系统应用实施路线图[EB/OL]. (2024-05-09)[2019-12014]. http:/www.caac.gov.cn/XXGK/XXGK/TZTG/201912/P020191213525396651648.pdf
    [12]
    肖雅木, 肖志斌, 刘小汇. BDSBAS在中国地区的双频增强定位效果评估[C]//第十三届中国卫星导航年会论文集——S03卫星导航系统与增强, 2022: 5.
    [13]
    全国北斗卫星导航标准化技术委员会(SAC/TC 544). 北斗星基增强系统空间信号接口规范第1部分: 单频增强服务信号BDSBAS-B1C[S]. 2023-08-06.
    [14]
    LI R, ZHENG S Y, WANG E S, et al. Advances in BeiDou navigation satellite system (BDS) and satellite navigation augmentation technologies.[J]. Satellite navigation , 2020, 1(1): 1-23. DOI: 10.1186/s43020-020-00010-2
    [15]
    SHAO B, DING Q, WU X. Estimation method of SBAS dual-frequency range error integrity parameter[J]. Satellite navigation, 2020, 1(1): 9. DOI: 10.1186/s43020-020-00011-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(28)  / Tables(2)

    Article Metrics

    Article views (29) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return