GNSS World of China

Turn off MathJax
Article Contents
FENG Lu, WU Peng, ZHENG Yu, ZHANG Zhuxian. Research on roll angle estimation method based on deep learning[J]. GNSS World of China. doi: 10.12265/j.gnss.2024078
Citation: FENG Lu, WU Peng, ZHENG Yu, ZHANG Zhuxian. Research on roll angle estimation method based on deep learning[J]. GNSS World of China. doi: 10.12265/j.gnss.2024078

Research on roll angle estimation method based on deep learning

doi: 10.12265/j.gnss.2024078
  • Received Date: 2024-04-15
    Available Online: 2024-10-29
  • Attitude measurement technology serves as a fundamental component in monitoring vehicle motion states and ensuring safety. The spinning motion of vehicles leads to a coupling of attitude angles, which significantly impacts flight control. In this paper, a deep learning approach based on the Long Short-Term Memory (LSTM) neural network is proposed to determine the real-time roll angle of a vehicle. The energy characteristics exhibited by a single antenna receiving satellite signals during the vehicle's rolling state have been analyzed in detail. A correlation between the real-time roll angle and the energy amplitude of the received signal has been established. The influence of changing satellite positions on these measurements is also discussed. Subsequently, the LSTM neural network training method is employed to extract periodic variation features from the measured signals, thereby obtaining various network parameters. These parameters are then used to predict and denoise the received signal, with the roll angle being computed by model matching. To validate the efficacy of the proposed method, a rolling experiment was conducted. The experimental results demonstrate that the LSTM-based deep learning approach effectively restores the features of the received signals, enabling accurate real-time measurement of the vehicle's roll angle.

     

  • loading
  • [1]
    LE V D, NGUYEN A T, NGUYEN L H, et al. Effectiveness analysis of spin motion in reducing dispersion of sounding rocket flight due to thrust misalignment[J]. International journal of aeronautical and space sciences, 2021, 22(5): 1194-1208. DOI: 10.1007/s42405-021-00383-x
    [2]
    YANG D, XIONG Y L, REN Q, et al. Nutation instability of spinning solid rocket motor spacecraft[J]. Chinese journal of aeronautics, 2017, 30(4): 1363-1372. DOI: 10.1016/j.cja.2017.06.005
    [3]
    YANG W C, WANG Z Q, SHEN C W, et al. Design of a roll angle measuring sensor[J]. IEEE access, 2020(8): 115159-115166. DOI: 10.1109/access.2020.3004365
    [4]
    GROVES P. Principles of GNSS, inertial, and multisensor integrated navigation systems[M]. Artech, 2007: 1.
    [5]
    AL-RAWASHDEH Y M, ELSHAFEI M, EL-FEIRIK S. Passive attitude estimation using gyroscopes and all-accelerometer IMU[C]// 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). IEEE, 2016. DOI: 10.1109/icmae.2016.7549568.
    [6]
    代桃高, 宫帅帅, 魏明, 等. 一种GNSS双天线姿态确定及点位标定方法研究[J]. 全球定位系统, 2019, 44(6): 110-115. DOI: 10.13442/j.gnss.1008-9288.2019.06.018
    [7]
    陆尤明, 刘刚, 崔晓伟, 等. 基于双天线联合的GNSS信号抗旋转跟踪算法[J]. 清华大学学报(自然科学版), 2021, 61(9): 1015-1024. DOI: 10.16511/j.cnki.qhdxxb.2021.21.025
    [8]
    廉璞, 牟东, 青泽, 等. 侵彻弹药姿态测量技术研究现状及发展[J]. 探测与控制学报, 2021, 43(2): 1-9.
    [9]
    NGUYEN D N, NGUYEN T A. Investigate the relationship between the vehicle roll angle and other factors when steering[J]. Modelling and simulation in engineering, 2023, 2023: 1-15. DOI: 10.1155/2023/6069078
    [10]
    COHEN C, PARKINSON B, MCNALLY B. Flight tests of attitude determination using GPS compared against an inertial navigation unit[J]. Navigation, 1994, 41(1): 83-97. DOI: 10.1002/j.2161-4296.1994.tb02323.x
    [11]
    LI N, ZHAO L, LI L, et al. Integrity monitoring of high-accuracy GNSS-based attitude determination[J]. GPS solutions, 2018, 22(4): 1-13. DOI: 10.1007/s10291-018-0787-x
    [12]
    IM H C, LEE S J. GPS signal tracking on a multi-antenna mounted spinning vehicle by compensating for the spin effects[J]. International journal of control, automation and systems, 2018, 16(2): 867-874. DOI: 10.1007/s12555-016-0705-3
    [13]
    ZHARKOV M V, VEREMEENKO K K, ANTONOV D A, et al. Attitude determination using ambiguous GNSS phase measurements and absolute angular rate measurements[J]. Gyroscopy and navigation (Online), 2018, 9(4): 277-286. DOI: 10.1134/s2075108718040090
    [14]
    DOTY J H, ANDERSON D A, BYBEE T. A demonstration of advanced spinning-vehicle navigation[C]. In Proceedings of the ION NTM, 2004, San Diego, CA, USA.
    [15]
    KIM J W, KANG H W, HWANG D H, et al. Signal tracking method of GNSS receivers for spinning vehicles[J]. International journal of control, automation and systems, 2012, 10(3): 529-535. DOI: 10.1007/s12555-012-0309-5
    [16]
    BAHDER T B. Attitude determination from single-antenna carrier-phase measurements[J]. Journal of applied physics, 2002, 91(7): 4677-4684. DOI: 10.1063/1.1448871
    [17]
    DENG Z L, SHEN Q, DENG Z W. Roll angle measurement for a spinning vehicle based on GPS signals received by a single-patch antenna[J]. Sensors, 2018, 18(10): 3479. DOI: 10.3390/s18103479
    [18]
    LIU Y, LI H, DU X. Roll attitude measurement technique based on GPS signal power[C]. 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 2019.
    [19]
    HEATON J, GOODFELLOW I, BENGIO Y, et al. Deep learning[J]. Genetic programming and evolvable machines, 2018, 19(1): 305-307. DOI: 10.1007/s10710-017-9314-z
    [20]
    GRAVES A, GREG W, MALCOLM R, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538(7626): 471-476. DOI: 10.1038/nature20101
    [21]
    BROSSARD M, BARRAU A, BONNABEL S. AI-IMU dead-reckoning[J]. IEEE transactions on intelligent vehicles, 2020, 5(4): 585-595. DOI: 10.1109/TIV.2020.2980758
    [22]
    TANG H, NIU X, ZHANG T, et al. OdoNet: untethered speed aiding for vehicle navigation without hardware wheeled odometer[J]. IEEE sensors journal, 2022, 22(12): 12197-12208. DOI: 10.1109/JSEN.2022.3169549
    [23]
    DUBEY A K, KUMAR A, VICENTE G D, et al. Study and analysis of SARIMA and LSTM in forecasting time series data[J]. Sustainable energy technologies and assessments, 2021, 47: 101474. DOI: 10.1016/j.seta.2021.101474
    [24]
    LIU Y, XU B, CHEN Z K, et al. Detection and mitigation of time synchronization attacks based on long short-term memory neural network[J]. GPS solutions, 2023, 28(1): 46. DOI: 10.1007/s10291-023-01587-2
    [25]
    尹玲, 尹京苑, 孙宪坤, 等. 缺失GPS时间序列的神经网络补全[J]. 测绘科学技术学报, 2018, 35(4): 331-336. DOI: CNKI:SUN:JFJC.0.2018-04-001.
    [26]
    CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE transactions on intelligent transportation systems, 2021, 22(10): 6503-6515. DOI: 10.1109/TITS.2020.2993052
    [27]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1): 1929-1958. DOI: 10.5555/2627435.2670313
    [28]
    ARORA S, COHEN N, GOLOWICH N, et al. A convergence analysis of gradient descent for deep linear neural networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
    [29]
    DU S S, LEE J D, LI H C, et al. Gradient descent finds global minima of deep neural networks[C]. 36th International Conference on Machine Learning, 2019, Long Beach, USA.
    [30]
    DU S S, ZHAI X Y, POCZOS B, et al. Gradient descent provably optimizes over-parameterized neural networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (22) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return