GNSS World of China
Citation: | FENG Lu, WU Peng, ZHENG Yu, ZHANG Zhuxian. Research on roll angle estimation method based on deep learning[J]. GNSS World of China. doi: 10.12265/j.gnss.2024078 |
[1] |
LE V D, NGUYEN A T, NGUYEN L H, et al. Effectiveness analysis of spin motion in reducing dispersion of sounding rocket flight due to thrust misalignment[J]. International journal of aeronautical and space sciences, 2021, 22(5): 1194-1208. DOI: 10.1007/s42405-021-00383-x
|
[2] |
YANG D, XIONG Y L, REN Q, et al. Nutation instability of spinning solid rocket motor spacecraft[J]. Chinese journal of aeronautics, 2017, 30(4): 1363-1372. DOI: 10.1016/j.cja.2017.06.005
|
[3] |
YANG W C, WANG Z Q, SHEN C W, et al. Design of a roll angle measuring sensor[J]. IEEE access, 2020(8): 115159-115166. DOI: 10.1109/access.2020.3004365
|
[4] |
GROVES P. Principles of GNSS, inertial, and multisensor integrated navigation systems[M]. Artech, 2007: 1.
|
[5] |
AL-RAWASHDEH Y M, ELSHAFEI M, EL-FEIRIK S. Passive attitude estimation using gyroscopes and all-accelerometer IMU[C]// 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). IEEE, 2016. DOI: 10.1109/icmae.2016.7549568.
|
[6] |
代桃高, 宫帅帅, 魏明, 等. 一种GNSS双天线姿态确定及点位标定方法研究[J]. 全球定位系统, 2019, 44(6): 110-115. DOI: 10.13442/j.gnss.1008-9288.2019.06.018
|
[7] |
陆尤明, 刘刚, 崔晓伟, 等. 基于双天线联合的GNSS信号抗旋转跟踪算法[J]. 清华大学学报(自然科学版), 2021, 61(9): 1015-1024. DOI: 10.16511/j.cnki.qhdxxb.2021.21.025
|
[8] |
廉璞, 牟东, 青泽, 等. 侵彻弹药姿态测量技术研究现状及发展[J]. 探测与控制学报, 2021, 43(2): 1-9.
|
[9] |
NGUYEN D N, NGUYEN T A. Investigate the relationship between the vehicle roll angle and other factors when steering[J]. Modelling and simulation in engineering, 2023, 2023: 1-15. DOI: 10.1155/2023/6069078
|
[10] |
COHEN C, PARKINSON B, MCNALLY B. Flight tests of attitude determination using GPS compared against an inertial navigation unit[J]. Navigation, 1994, 41(1): 83-97. DOI: 10.1002/j.2161-4296.1994.tb02323.x
|
[11] |
LI N, ZHAO L, LI L, et al. Integrity monitoring of high-accuracy GNSS-based attitude determination[J]. GPS solutions, 2018, 22(4): 1-13. DOI: 10.1007/s10291-018-0787-x
|
[12] |
IM H C, LEE S J. GPS signal tracking on a multi-antenna mounted spinning vehicle by compensating for the spin effects[J]. International journal of control, automation and systems, 2018, 16(2): 867-874. DOI: 10.1007/s12555-016-0705-3
|
[13] |
ZHARKOV M V, VEREMEENKO K K, ANTONOV D A, et al. Attitude determination using ambiguous GNSS phase measurements and absolute angular rate measurements[J]. Gyroscopy and navigation (Online), 2018, 9(4): 277-286. DOI: 10.1134/s2075108718040090
|
[14] |
DOTY J H, ANDERSON D A, BYBEE T. A demonstration of advanced spinning-vehicle navigation[C]. In Proceedings of the ION NTM, 2004, San Diego, CA, USA.
|
[15] |
KIM J W, KANG H W, HWANG D H, et al. Signal tracking method of GNSS receivers for spinning vehicles[J]. International journal of control, automation and systems, 2012, 10(3): 529-535. DOI: 10.1007/s12555-012-0309-5
|
[16] |
BAHDER T B. Attitude determination from single-antenna carrier-phase measurements[J]. Journal of applied physics, 2002, 91(7): 4677-4684. DOI: 10.1063/1.1448871
|
[17] |
DENG Z L, SHEN Q, DENG Z W. Roll angle measurement for a spinning vehicle based on GPS signals received by a single-patch antenna[J]. Sensors, 2018, 18(10): 3479. DOI: 10.3390/s18103479
|
[18] |
LIU Y, LI H, DU X. Roll attitude measurement technique based on GPS signal power[C]. 2019 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 2019.
|
[19] |
HEATON J, GOODFELLOW I, BENGIO Y, et al. Deep learning[J]. Genetic programming and evolvable machines, 2018, 19(1): 305-307. DOI: 10.1007/s10710-017-9314-z
|
[20] |
GRAVES A, GREG W, MALCOLM R, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538(7626): 471-476. DOI: 10.1038/nature20101
|
[21] |
BROSSARD M, BARRAU A, BONNABEL S. AI-IMU dead-reckoning[J]. IEEE transactions on intelligent vehicles, 2020, 5(4): 585-595. DOI: 10.1109/TIV.2020.2980758
|
[22] |
TANG H, NIU X, ZHANG T, et al. OdoNet: untethered speed aiding for vehicle navigation without hardware wheeled odometer[J]. IEEE sensors journal, 2022, 22(12): 12197-12208. DOI: 10.1109/JSEN.2022.3169549
|
[23] |
DUBEY A K, KUMAR A, VICENTE G D, et al. Study and analysis of SARIMA and LSTM in forecasting time series data[J]. Sustainable energy technologies and assessments, 2021, 47: 101474. DOI: 10.1016/j.seta.2021.101474
|
[24] |
LIU Y, XU B, CHEN Z K, et al. Detection and mitigation of time synchronization attacks based on long short-term memory neural network[J]. GPS solutions, 2023, 28(1): 46. DOI: 10.1007/s10291-023-01587-2
|
[25] |
尹玲, 尹京苑, 孙宪坤, 等. 缺失GPS时间序列的神经网络补全[J]. 测绘科学技术学报, 2018, 35(4): 331-336. DOI: CNKI:SUN:JFJC.0.2018-04-001.
|
[26] |
CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE transactions on intelligent transportation systems, 2021, 22(10): 6503-6515. DOI: 10.1109/TITS.2020.2993052
|
[27] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1): 1929-1958. DOI: 10.5555/2627435.2670313
|
[28] |
ARORA S, COHEN N, GOLOWICH N, et al. A convergence analysis of gradient descent for deep linear neural networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
|
[29] |
DU S S, LEE J D, LI H C, et al. Gradient descent finds global minima of deep neural networks[C]. 36th International Conference on Machine Learning, 2019, Long Beach, USA.
|
[30] |
DU S S, ZHAI X Y, POCZOS B, et al. Gradient descent provably optimizes over-parameterized neural networks[C]. 7th International Conference on Learning Representations, 2019, New Orleans, USA.
|