GNSS World of China

Volume 49 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LIU Ao, GUO Hang, XIONG Jian, WANG Mengli. GNSS/IMU/LiDAR fusion positioning research[J]. GNSS World of China, 2024, 49(3): 73-79. doi: 10.12265/j.gnss.2024013
Citation: LIU Ao, GUO Hang, XIONG Jian, WANG Mengli. GNSS/IMU/LiDAR fusion positioning research[J]. GNSS World of China, 2024, 49(3): 73-79. doi: 10.12265/j.gnss.2024013

GNSS/IMU/LiDAR fusion positioning research

doi: 10.12265/j.gnss.2024013
  • Received Date: 2024-01-18
  • Accepted Date: 2024-01-18
  • Available Online: 2024-04-22
  • To improve the anti-interference and positioning accuracy of conventional integrated navigation and positioning under the conditions of low-cost satellite receivers and IMU, this paper proposes to fuse GNSS, inertial measurement unit (IMU), and laser radar (LiDAR) to enhance the robustness and accuracy of positioning. In complex environments such as high-rise buildings, where satellite signals are lost, the robustness and accuracy of navigation and positioning can be improved by fusing IMU and GNSS. However, if the satellite signal loss time is too long, the IMU/GNSS integrated positioning accuracy under low-cost conditions is still not ideal. This paper proposes to use the position information output by the LiDAR odometer and the conventional integrated navigation to perform fusion positioning through extended Kalman filter (EKF). The experiments show that in the unobstructed environment, the fusion positioning standard deviation (STD) accuracy is 53.7% higher than the satellite positioning, the root mean square error (RMSE) accuracy is 56% higher, the fusion positioning STD accuracy is 37.9% higher than the GNSS/IMU integrated positioning, and the RMSE accuracy is 38.6% higher. In the obstructed environment, the fusion positioning STD accuracy is 59.4% higher than the satellite positioning, the RMSE accuracy is 71.3% higher, the fusion positioning STD accuracy is 26.3% higher than the GNSS/IMU integrated positioning, and the RMSE accuracy is 33.7% higher.

     

  • loading
  • [1]
    KINDERVATTER T H, TEIXEIRA F L. Tropospheric and ionospheric effects on Global Navigation Satellite Systems[M]. John Wiley & Sons, 2022.
    [2]
    ERSHAD M, ALI E. Global Positioning System (GPS): definition, principles, errors, applications & DGPS[J/OL]. [2023-12-23]. 2020. https://doc.taixueshu.com/foreign/rgPres2020129418177.html
    [3]
    GROVES P D. Principles of GNSS, inertial, and multisensor integrated navigation systems.[J]. IEEE aerospace and electronic systems magazine, 2015, 30(2): 26-27. DOI: 10.1109/MAES.2014.14110
    [4]
    李正帅, 缪玲娟, 周志强, 等. GNSS/SINS组合导航中多路径效应的识别与抑制算法[J]. 导航定位与授时, 2022, 9(4): 85-92.
    [5]
    金耀, 周又眉, 张贺, 等. 北斗+5G融合定位技术研究及应用进展[J]. 全球定位系统, 2023, 48(4): 12-18. DOI: 10.12265/j.gnss.2023091
    [6]
    VANA S, BISNATH S. Enhancing navigation in difficult environments with low-cost, dual-frequency GNSS PPP and MEMS IMU[C]//International Association of Geodesy., General Assembly, 2022: 143-150. DOI: 10.1007/1345_2020_118
    [7]
    SUN X, ZHUANG Y, CHEN S, et al. Tightly-coupled RTK/ins integrated navigation using a low-cost GNSS receiver and a MEMS IMU[J]. The international archives of the photogrammetry, remote sensing and spatial information sciences, 2022(46): 185-190. DOI: 10.5194/isprs-archives-xlvi-3-w1-2022-185-2022
    [8]
    YUAN Y L, LI F, CHEN J L, et al. An improved Kalman filter algorithm for tightly GNSS/INS integrated navigation system[J]. Mathematical biosciences and engineering, 2024, 21(1): 963-983. DOI: 10.3934/mbe.2024040
    [9]
    LI X X, HUANG J X, LI X, et al. Review of PPP–RTK: achievements, challenges, and opportunities[J]. Satellite navigation, 2022, 3(1): 28. DOI: 10.1186/s43020-022-00089-9
    [10]
    FENG Y H, HUANG G W, LI X, et al. Adaptive BDS/MEMS INS navigation algorithm for low-dynamic carrier based on motion characteristics detection and dual-antenna Position/Velocity constraints[J]. Measurement, 2024, 225: 114037. DOI: 10.1016/j.measurement.2023.114037
    [11]
    冯祎, 涂锐, 韩军强, 等. 一种GNSS/视觉观测紧组合导航定位算法研究[J]. 全球定位系统, 2021, 46(6): 49-54.
    [12]
    张哲浩, 潘林. 多系统融合单点定位先验和验后定权研究[J]. 全球定位系统, 2021, 46(3): 1-6. DOI: 10.12265/j.gnss.2021010401
    [13]
    ZHANG J, SINGH S. LOAM: Lidar odometry and mapping in real-time[C]//Robotics: Science and Systems. 2014, 2(9): 1-9. DOI: 10.15607/RSS.2014.X.007
    [14]
    严恭敏. 捷联惯导算法及车载组合导航系统研究[D]. 西安: 西北工业大学, 2004.
    [15]
    严恭敏, 杨小康, 翁浚, 等. 一种无误差的捷联惯导数值更新新算法[J]. 导航定位学报, 2018, 6(2): 20-22,35.
    [16]
    秦永元. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 2021.
    [17]
    刘席天. 城市半遮蔽环境下GNSS/INS组合导航算法设计与实现[D]. 徐州: 中国矿业大学, 2023.
    [18]
    王甫红, 栾梦杰, 程雨欣, 等. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1106-1116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (515) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return