GNSS World of China

Volume 49 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WU Pituan, QIN Xian, WEI Jia, XIAO Minghong, HUANG Ming, YANG Zhao. The performance of SF-PPP corrected by different ionospheric models[J]. GNSS World of China, 2024, 49(2): 1-8. doi: 10.12265/j.gnss.2023225
Citation: WU Pituan, QIN Xian, WEI Jia, XIAO Minghong, HUANG Ming, YANG Zhao. The performance of SF-PPP corrected by different ionospheric models[J]. GNSS World of China, 2024, 49(2): 1-8. doi: 10.12265/j.gnss.2023225

The performance of SF-PPP corrected by different ionospheric models

doi: 10.12265/j.gnss.2023225
  • Received Date: 2023-12-08
  • Accepted Date: 2023-12-08
  • Available Online: 2024-03-26
  • Ionospheric delay can seriously affect the positioning accuracy of single-frequency global navigation satellite system (GNSS) receiver. Thus, this paper assessed the positioning error of single-frequency GNSS receiver corrected by four commonly used ionospheric delay correction methods, i.e., broadcast ionospheric correction models (strategy 1), time-rotation interpolation of Global Ionosphere Map (GIM) considering the variation of the position for the sun (strategy 2), GIM corrected by ionospheric mapping function (strategy 3), and half-sum correction model (strategy 4). Meanwhile, the correction results of different methods for the single-frequency precise point positioning (SF-PPP) were evaluated by using the data collected by ground-based GNSS stations over different latitudes on solar condition days. The assessment results were listed as follows. 1) The positioning error of SF-PPP corrected by the half-sum correction model was the best, then was the ionospheric delay corrected GIM. The positioning error corrected by broadcast ionospheric model was the worst. 2) On different solar condition days of each strategy, the positioning error for low-latitude stations was the largest, the was high-latitude stations. The positioning error for mid-latitude stations was the smallest. 3) The horizontal positioning error of strategy 2 and strategy 3 was about 0.150 m over different latitudes on different solar activity periods, while the 3D positioning error is about 0.700 m. The corresponding errors were about 0.100 m and 0.500 m for strategy 4.

     

  • loading
  • [1]
    袁运斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 北京: 中国科学院研究生院(测量与地球物理研究所), 2002.
    [2]
    张小红, 胡佳欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100.
    [3]
    李众, 葛海波, 卜宇航. 几种附电离层约束GNSS单频PPP性能评估[J]. 全球定位系统, 2021, 46(4): 59-65.
    [4]
    王波. 电离层闪烁下的PPP-RTK定位性能评估[J]. 全球定位系统, 2023, 48(1): 37-45.
    [5]
    聂文锋, 胡伍生, 潘树国, 等. 利用GPS双频数据进行区域电离层TEC提取[J]. 武汉大学学报(信息科学版), 2014(9): 6-7.
    [6]
    EREN E, MICHEAL S, FLORIAN S, et al. Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter[J]. Annales geophysicae, 2017, 35(2): 263-277. DOI: 10.5194/angeo-35-263-2017
    [7]
    HERNÁNDEZ-PAJARES M, ROMA-DOLLASE D, KRANKOWSKI A, et al. Methodology and consistency of slant and vertical assessments for ionospheric electron content models[J]. Journal of geodesy, 2017, 91(12): 1405-1414. DOI: 10.1007/s00190-017-1032-z
    [8]
    LIU T, ZHANG B C, YUAN Y B, et al. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling[J]. Journal of geodesy, 2018, 92(11): 1267-1283. DOI: 10.1007/s00190-018-1118-2
    [9]
    LI Z, WANG N, HERNÁNDEZ-PAJARES M, et al. IGS real-time service for global ionospheric total electron content modeling[J]. Journal of geodesy, 2020, 94(3): 32. DOI: 10.1007/s00190-020-01360-0
    [10]
    MENDOZA L P O, MEZA A M, ARAGON P J M. Near-real-time VTEC maps: New contribution for Latin America Space Weather[J]. Advances in space research, 2020(65): 2235-2246. DOI: 10.1016/j.asr.2019.08.045
    [11]
    赵金生. 实时电离层格网数据精度评估[J]. 空间科学学报, 2020, 40(6): 1024-1029.
    [12]
    高清文, 赵国忱. CEEMD与GRNN神经网络电离层TEC预报模型[J]. 全球定位系统, 2021, 46(4): 76-84. DOI: 10.12265/j.gnss.2020091401
    [13]
    熊雯, 王博文, 刘裔文, 等. 基于GNSS TEC的电离层自相关预报误差分析及参数优化[J]. 全球定位系统, 2022, 47(5): 45-50. DOI: 10.12265/j.gnss.2022097
    [14]
    张研, 王宁波, 李子申, 等. 全球实时电离层模型精度分析——以CAS、CNES、NRCan及UPC产品为例[J]. 大地测量与地球动力学, 2022, 42(10): 1095-1100.
    [15]
    宋秉红. BP神经网络模型的电离层预报精度评估[J]. 全球定位系统, 2023, 48(5): 79-82,102.
    [16]
    REN X D, CHEN J, LI X X, et al. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers[J]. GPS solutions, 2019, 23(4): 113. DOI: 10.1007/s10291-019-0904-5
    [17]
    HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998[J]. Journal of geodesy, 2009, 83(3/4): 263-275. DOI: 10.1007/S00190-008-0266-1
    [18]
    ROMA-DOLLASE D, HERNÁNDEZ-PAJARES M, KRANKOWSKI A, et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle[J]. Journal of geodesy, 2018, 92(6): 691-706. DOI: 10.1007/s00190-017-1088-9
    [19]
    盛传贞, 张京奎, 张宝成. 不同全球电离层格网产品在中国区域的应用精度评估与分析[J]. 全球定位系统, 2021, 46(4): 8-15.
    [20]
    王华峰, 张艳茹, 蔡红涛, 等. 多GNSS监测下中国区域电离层格网模型可用性分析[J]. 全球定位系统, 2022, 47(2): 60-65. DOI: 10.12265/j.gnss.2021050602
    [21]
    肖勇. 高纬度区域GNSS多系统电离层建模及其精度评估[J]. 全球定位系统, 2023, 48(3): 33-38.
    [22]
    KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE transactions on aerospace and electronic systems, 1987, AES-23(3): 325-331. DOI: 10.1109/TAES.1987.310829
    [23]
    BI T, AN J C, YANG J, et al. A modified Klobuchar model for single-frequency GNSS users over the polar region[J]. Advances in space research, 2017, 59(3): 833-842. DOI: 10.1016/j.asr.2016.10.029
    [24]
    WANG N B, LI Z S, YUAN Y B, et al. Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model[J]. Advances in space research, 2019, 63(2): 886-896. DOI: 10.1016/j.asr.2018.10.006
    [25]
    ZHANG Q, LIU Z Y, HU Z G, et al. A modified BDS Klobuchar model considering hourly estimated night-time delays[J]. GPS solutions, 2022, 26(2): 49. DOI: 10.1007/s10291-022-01236-0
    [26]
    HOQUE M M, JAKOWSKI N, BERDERMANN J. Ionospheric correction using NTCM driven by GPS Klobuchar coefficients for GNSS applications[J]. GPS solutions, 2017, 21(4): 1563-1572. DOI: 10.1007/s10291-017-0632-7
    [27]
    ZHANG X H, MA F J, REN X D, et al. Evaluation of NTCM-BC and a proposed modification for single-frequency positioning[J]. GPS solutions, 2017, 21(4): 1535-1548. DOI: 10.1007/s10291-017-0631-8
    [28]
    HOQUE M M, JAKOWSKI N, ORÚS-PÉREZ R. Fast ionospheric correction using Galileo Az coefficients and the NTCM model[J]. GPS solutions, 2019, 23(2): 41. DOI: 10.1007/s10291-019-0833-3
    [29]
    WANG N B, YUAN Y B, LI Z S, et al. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections[J]. Advances in space research, 2016, 57(7): 1555-1569. DOI: 10.1016/j.asr.2016.01.010
    [30]
    WANG N B, LI Z S, LI M, et al. GPS, BDS and Galileo ionospheric correction models: an evaluation in range delay and position domain[J]. Journal of atmospheric and solar-terrestrial physics, 2018(170): 83-91. DOI: 10.1016/j.jastp.2018.02.014
    [31]
    聂建亮. GPS精密单点定位算法及故障诊断研究[D]. 西安:长安大学, 2010.
    [32]
    SCHAER S, GURTNER W, FELTENS J. IONEX: the ionosphere map exchange format version 1[C]// Proceedings of the IGS Analysis Center Workshop, 1998.
    [33]
    冯建迪, 王正涛, 赵珍珍. 卫星导航服务的全球电离层时变特性分析[J]. 测绘科学, 2015, 40(2): 13-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (77) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return