GNSS World of China
Citation: | WU Pituan, QIN Xian, WEI Jia, XIAO Minghong, HUANG Ming, YANG Zhao. The performance of SF-PPP corrected by different ionospheric models[J]. GNSS World of China, 2024, 49(2): 1-8. doi: 10.12265/j.gnss.2023225 |
[1] |
袁运斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 北京: 中国科学院研究生院(测量与地球物理研究所), 2002.
|
[2] |
张小红, 胡佳欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100.
|
[3] |
李众, 葛海波, 卜宇航. 几种附电离层约束GNSS单频PPP性能评估[J]. 全球定位系统, 2021, 46(4): 59-65.
|
[4] |
王波. 电离层闪烁下的PPP-RTK定位性能评估[J]. 全球定位系统, 2023, 48(1): 37-45.
|
[5] |
聂文锋, 胡伍生, 潘树国, 等. 利用GPS双频数据进行区域电离层TEC提取[J]. 武汉大学学报(信息科学版), 2014(9): 6-7.
|
[6] |
EREN E, MICHEAL S, FLORIAN S, et al. Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter[J]. Annales geophysicae, 2017, 35(2): 263-277. DOI: 10.5194/angeo-35-263-2017
|
[7] |
HERNÁNDEZ-PAJARES M, ROMA-DOLLASE D, KRANKOWSKI A, et al. Methodology and consistency of slant and vertical assessments for ionospheric electron content models[J]. Journal of geodesy, 2017, 91(12): 1405-1414. DOI: 10.1007/s00190-017-1032-z
|
[8] |
LIU T, ZHANG B C, YUAN Y B, et al. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling[J]. Journal of geodesy, 2018, 92(11): 1267-1283. DOI: 10.1007/s00190-018-1118-2
|
[9] |
LI Z, WANG N, HERNÁNDEZ-PAJARES M, et al. IGS real-time service for global ionospheric total electron content modeling[J]. Journal of geodesy, 2020, 94(3): 32. DOI: 10.1007/s00190-020-01360-0
|
[10] |
MENDOZA L P O, MEZA A M, ARAGON P J M. Near-real-time VTEC maps: New contribution for Latin America Space Weather[J]. Advances in space research, 2020(65): 2235-2246. DOI: 10.1016/j.asr.2019.08.045
|
[11] |
赵金生. 实时电离层格网数据精度评估[J]. 空间科学学报, 2020, 40(6): 1024-1029.
|
[12] |
高清文, 赵国忱. CEEMD与GRNN神经网络电离层TEC预报模型[J]. 全球定位系统, 2021, 46(4): 76-84. DOI: 10.12265/j.gnss.2020091401
|
[13] |
熊雯, 王博文, 刘裔文, 等. 基于GNSS TEC的电离层自相关预报误差分析及参数优化[J]. 全球定位系统, 2022, 47(5): 45-50. DOI: 10.12265/j.gnss.2022097
|
[14] |
张研, 王宁波, 李子申, 等. 全球实时电离层模型精度分析——以CAS、CNES、NRCan及UPC产品为例[J]. 大地测量与地球动力学, 2022, 42(10): 1095-1100.
|
[15] |
宋秉红. BP神经网络模型的电离层预报精度评估[J]. 全球定位系统, 2023, 48(5): 79-82,102.
|
[16] |
REN X D, CHEN J, LI X X, et al. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers[J]. GPS solutions, 2019, 23(4): 113. DOI: 10.1007/s10291-019-0904-5
|
[17] |
HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998[J]. Journal of geodesy, 2009, 83(3/4): 263-275. DOI: 10.1007/S00190-008-0266-1
|
[18] |
ROMA-DOLLASE D, HERNÁNDEZ-PAJARES M, KRANKOWSKI A, et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle[J]. Journal of geodesy, 2018, 92(6): 691-706. DOI: 10.1007/s00190-017-1088-9
|
[19] |
盛传贞, 张京奎, 张宝成. 不同全球电离层格网产品在中国区域的应用精度评估与分析[J]. 全球定位系统, 2021, 46(4): 8-15.
|
[20] |
王华峰, 张艳茹, 蔡红涛, 等. 多GNSS监测下中国区域电离层格网模型可用性分析[J]. 全球定位系统, 2022, 47(2): 60-65. DOI: 10.12265/j.gnss.2021050602
|
[21] |
肖勇. 高纬度区域GNSS多系统电离层建模及其精度评估[J]. 全球定位系统, 2023, 48(3): 33-38.
|
[22] |
KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE transactions on aerospace and electronic systems, 1987, AES-23(3): 325-331. DOI: 10.1109/TAES.1987.310829
|
[23] |
BI T, AN J C, YANG J, et al. A modified Klobuchar model for single-frequency GNSS users over the polar region[J]. Advances in space research, 2017, 59(3): 833-842. DOI: 10.1016/j.asr.2016.10.029
|
[24] |
WANG N B, LI Z S, YUAN Y B, et al. Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model[J]. Advances in space research, 2019, 63(2): 886-896. DOI: 10.1016/j.asr.2018.10.006
|
[25] |
ZHANG Q, LIU Z Y, HU Z G, et al. A modified BDS Klobuchar model considering hourly estimated night-time delays[J]. GPS solutions, 2022, 26(2): 49. DOI: 10.1007/s10291-022-01236-0
|
[26] |
HOQUE M M, JAKOWSKI N, BERDERMANN J. Ionospheric correction using NTCM driven by GPS Klobuchar coefficients for GNSS applications[J]. GPS solutions, 2017, 21(4): 1563-1572. DOI: 10.1007/s10291-017-0632-7
|
[27] |
ZHANG X H, MA F J, REN X D, et al. Evaluation of NTCM-BC and a proposed modification for single-frequency positioning[J]. GPS solutions, 2017, 21(4): 1535-1548. DOI: 10.1007/s10291-017-0631-8
|
[28] |
HOQUE M M, JAKOWSKI N, ORÚS-PÉREZ R. Fast ionospheric correction using Galileo Az coefficients and the NTCM model[J]. GPS solutions, 2019, 23(2): 41. DOI: 10.1007/s10291-019-0833-3
|
[29] |
WANG N B, YUAN Y B, LI Z S, et al. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections[J]. Advances in space research, 2016, 57(7): 1555-1569. DOI: 10.1016/j.asr.2016.01.010
|
[30] |
WANG N B, LI Z S, LI M, et al. GPS, BDS and Galileo ionospheric correction models: an evaluation in range delay and position domain[J]. Journal of atmospheric and solar-terrestrial physics, 2018(170): 83-91. DOI: 10.1016/j.jastp.2018.02.014
|
[31] |
聂建亮. GPS精密单点定位算法及故障诊断研究[D]. 西安:长安大学, 2010.
|
[32] |
SCHAER S, GURTNER W, FELTENS J. IONEX: the ionosphere map exchange format version 1[C]// Proceedings of the IGS Analysis Center Workshop, 1998.
|
[33] |
冯建迪, 王正涛, 赵珍珍. 卫星导航服务的全球电离层时变特性分析[J]. 测绘科学, 2015, 40(2): 13-17.
|