GNSS World of China

Volume 49 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
HUANG Liubo. Extraction of common mode error based on SSA method and its impact analysis on GNSS vertical coordinate time series[J]. GNSS World of China, 2024, 49(3): 45-50, 79. doi: 10.12265/j.gnss.2023223
Citation: HUANG Liubo. Extraction of common mode error based on SSA method and its impact analysis on GNSS vertical coordinate time series[J]. GNSS World of China, 2024, 49(3): 45-50, 79. doi: 10.12265/j.gnss.2023223

Extraction of common mode error based on SSA method and its impact analysis on GNSS vertical coordinate time series

doi: 10.12265/j.gnss.2023223
  • Received Date: 2023-12-05
  • Accepted Date: 2023-12-05
  • Available Online: 2024-04-25
  • This study, based on eight years of data from 24 Global Navigation Satellite Systems (GNSS) stations in northern Germany, introduces the singular spectrum analysis method. It proposes a common mode error identification method that considers the inter-correlation of different residual subcomponents and their contribution rates. The impact of common mode errors on GNSS coordinate time series noise and parameter estimation is explored. Compared with the principal component analysis (PCA) method, it is found that the method proposed in this paper closely aligns with the common mode errors extracted by PCA, confirming the feasibility of the new method. The GNSS common mode error sequence mainly contains white noise, flicker noise, and power-law noise with non-integer spectral indices. After removing common mode errors, the magnitude of white noise and colored noise at each station decreased by an average of 30.32% and 52.61% respectively, indicating that colored noise dominates in common mode errors. Furthermore, after correcting common mode errors, the annual and semi-annual cycle amplitudes of coordinates are reduced, and the root mean square error of parameter fitting is decreased by 16.7%. In summary, the method described in this paper is of significant practical importance in improving the quality of GNSS coordinate time series.

     

  • loading
  • [1]
    伍吉仓, 孙亚锋, 刘朝功. 连续GPS站坐标序列共性误差的提取与形变分析[J]. 大地测量与地球动力学, 2008, 28(4): 97-101.
    [2]
    雷传金, 魏冠军, 高茂宁, 等. 基于独立分量法的新疆GNSS时间序列共模误差分析[J]. 全球定位系统, 2022, 47(3): 1-8.
    [3]
    WDOWINSKI S, BOCK Y, ZHANG J, et al. Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismal and post seismic displacements induced by the 1992 landers earthquake[J]. Journal of geophysical research, 1997, 102(B8): 18057-18070. DOI: 10.1029/97JB01378
    [4]
    常金龙, 甘卫军, 梁诗明, 等. 大华北地区GPS时间序列共模误差的确定与分析[J]. 地震研究, 2018, 41(3): 430-437.
    [5]
    DONG D, FANG P, BOCK Y, et al. Spatiotemporal filtering using principal component analysis and Karhunen Love expansion approaches for regional GPS network analysis[J]. Journal of geophysical research, 2006, 111(B3): B03405. DOI: 10.1029/2005jb003806
    [6]
    OZAWA S, YARAI H, KOBAYASHI T. Recovery of the recurrence interval of Boso slow slip events in Japan[J]. Earth, planets, and space, 2019, 71(1): 1-8. DOI: 10.1186/s40623-019-1058-y
    [7]
    占伟, 李经纬. 云南GNSS时间序列共模分量提取分析[J]. 地震研究, 2021, 44(1): 56-63.
    [8]
    LI Y, XU C, YI L, et al. A data-driven approach for denoising GNSS position time series[J]. Journal of geodesy, 2018(92): 905-922. DOI: 10.1007/s00190-017-1102-2
    [9]
    LI W, JIANG W, LI Z, et al. Extracting common mode errors of regional GNSS position time series in the presence of missing data by variational Bayesian principal component analysis[J]. Sensors, 2020, 20(8): 2298. DOI: 10.3390/s20082298
    [10]
    ZHOU M, GUO J, LIU X, et al. Crustal movement derived by GNSS technique considering common mode error with MSSA[J]. Advances in space research, 2020, 66(8): 1819-1828. DOI: 10.1016/j.asr.2020.06.018
    [11]
    王勇, 曹慧鹏, 尚军, 等. GNSS坐标时序空间域共模误差去除研究[J]. 大地测量与地球动力学, 2023, 43(6): 551-555.
    [12]
    欧阳文一, 姜卫平, 周晓慧, 等. 用于GNSS坐标序列共模误差剔除的滤波方法分析对比[J]. 测绘地理信息, 2021, 46(S1): 105-108.
    [13]
    GRUSZCZYNSKI M, KLOS A, BOGUSZ J. A filtering of incomplete GNSS position time series with probabilistic principal component analysis[J]. Pure and applied geophysics, 2018, 175(5): 1841-1867. DOI: 10.1007/s00024-018-1856-3
    [14]
    HU S, CHEN K, ZHU H, et al. Potential contributors to CME and optimal noise model analysis in the chinese region based on different HYDL models[J]. Remote sensing, 2023, 15(4): 945. DOI: 10.3390/rs15040945
    [15]
    陶庭叶, 何蓉, 丁鑫, 等. 安徽省CORS坐标时间序列共模误差与噪声分析[J]. 测绘科学, 2022, 47(1): 49-58,65.
    [16]
    HASSANI H. Singular spectrum analysis: methodology and comparison[J]. Journal of data science, 2007, 5(2): 239-257. DOI: 10.6339/JDS.2007.05(2).396
    [17]
    KOCH K R. Maximum likehood estimate of variance components[J]. Bulletin geodesique, 1986, 60(4): 329-338. DOI: 10.1007/BF02522340
    [18]
    NIKOLAIDIS R. Observation of geodetic and seismic deformation with the Global Positioning System [D]. San Diego: University of California, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (150) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return