GNSS World of China

Volume 49 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
CAI Xiangyuan, CHEN Xiaotong, LI Ronghao, WEI Jiangnan, LI Shuai, ZHAO Hongying. Improved algorithm for tree height extraction based on sparse and dense image matching with epipolar constraints[J]. GNSS World of China, 2024, 49(3): 87-93. doi: 10.12265/j.gnss.2023221
Citation: CAI Xiangyuan, CHEN Xiaotong, LI Ronghao, WEI Jiangnan, LI Shuai, ZHAO Hongying. Improved algorithm for tree height extraction based on sparse and dense image matching with epipolar constraints[J]. GNSS World of China, 2024, 49(3): 87-93. doi: 10.12265/j.gnss.2023221

Improved algorithm for tree height extraction based on sparse and dense image matching with epipolar constraints

doi: 10.12265/j.gnss.2023221
  • Received Date: 2023-12-04
  • Accepted Date: 2023-12-04
  • Available Online: 2024-04-19
  • Tree height is a crucial parameter for monitoring forest conditions and photogrammetry stands out as an essential method for tree height acquisition due to its low cost and flexibility. As a passive remote sensing approach, the traditional photogrammetric method often requires a substantial quantity of images with high overlap, which is associated with the sparsity of traditional image features. To enhance tree height extraction accuracy under limited image availability, a proposed approach combines sparse feature matching with dense pixel matching, by employing the epipolar constraint to filter outliers, dense and highly accurate matching results are obtained. The three-dimensional reconstruction algorithm is then applied to generate a point cloud representing the forest scene. This method demonstrates the capability to reconstruct the forest scene comprehensively and extract tree heights even with a small number of images. Comparison with results from LiDAR point clouds yields a correlation coefficient of 0.91 and a maximum error of 1.64 meters. Notably, the algorithm requires only a small number of overlapping images, indicating its potential in handling high-resolution satellite imagery.

     

  • loading
  • [1]
    FILIPPELLI S K, LEFSKY M A, ROCCA M E. Compa-rison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure[J]. Remote sen-sing of environment, 2019(224):154-166. DOI: 10.1016/j.rse.2019.01.029
    [2]
    PULITI C S. Structure from motion photogrammetry in forestry: a review[J]. Current forestry reports, 2019, 5(3): 155-168. DOI: 10.1007/s40725-019-00094-3
    [3]
    SWAYZE N C, TINKHAM W T, VOGELER J C, et al. Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density[J]. Remote sensing of environment:an interdisciplinary journal, 2021, 263(5): 112540. DOI: 10.1016/j.rse.2021.112540
    [4]
    SCHÖNBERGER J L, FRAHM J M. Structure-from-mot-ion revisited[C]//The IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4104-4113. DOI: 10.1109/cvpr.2016.445
    [5]
    SCHÖNBERGER J L, ZHENG E, FRAHM J M, et al. Pixelwise View Selection for Unstructured Multi-view Stereo[C]//Computer Vision–ECCV 2016: 14th European Conference, 2016: 501-518. DOI: 10.1007/978-3-319-46487-9_31
    [6]
    MOULON P, MONASSE P, PERROT R, et al. Openmvg: open multiple view geometry[C]//Reproducible Research in Pattern Recognition: First International Workshop, 2017: 60-74. DOI: 10.1007/978-3-319-56414-2_5
    [7]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110. DOI: 10.1023/b:visi.0000029664.99615.94
    [8]
    徐锦乐, 潘树国, 高旺, 等. 基于惯性先验校正图像灰度的VIO前端改良方法[J]. 全球定位系统, 2023, 48(3): 102-109. DOI: 10.12265/j.gnss.2023067
    [9]
    DETONE D, MALISIEWICZ T, RABINOVICH A. Sup-erpoint: Self-supervised interest point detection and descri-ption[C]//The IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 224-236. DOI: 10.1109/cvprw.2018.00060
    [10]
    TYSZKIEWICZ M, FUA P, TRULLS E. DISK: learning local features with policy gradient[J]. Advances in neural information processing systems, 2020(33): 14254-14265. DOI: 10.48550/arXiv.2006.13566
    [11]
    SUN J, SHEN Z, WANG Y, et al. LoFTR: detector-free local feature matching with transformers[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8922-8931. DOI: 10.1109/cvpr46437.2021.00881
    [12]
    EDSTEDT J, ATHANASIADIS I, WADENBÄCK M, et al. DKM: dense kernelized feature matching for geometry estimation[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 17765-17775. DOI: 10.1109/cvpr52729.2023.01704
    [13]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attenti-on is all you need[J]. Advances in neural information processing systems, 2017(v1). DOI: 10.48550/arXiv.1706.03762
    [14]
    SARLIN P E, DETONE D, MALISIEWICZ T, et al. Su-perglue: learning feature matching with graph neural net-works[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4938-4947. DOI: 10.1109/cvpr42600.2020.00499
    [15]
    LINDENBERGER P, SARLIN P E, POLLEFEYS M. LightGlue: local feature matching at light speed[C]//TEEE/CVF International Conference on Computer Vision, 2023: 17581-17592. DOI: 10.1109/ICCV51070.2023.01616
    [16]
    HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge university press, 2003.
    [17]
    BARATH D, NOSKOVA J, IVASHECHKIN M, et al. MAGSAC++, a fast, reliable and accurate robust estimator[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1304-1312. DOI: 10.1109/cvpr42600.2020.00138
    [18]
    ZHAO X, GUO Q, SU Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS journal of photogrammetry and remote sensing, 2016(117): 79-91. DOI: 10.1016/j.isprsjprs.2016.03.016
    [19]
    LI W, GUO Q, JAKUBOWSKI M K, et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogrammetric engineering & remote sensing, 2012, 78(1): 75-84. DOI: 10.14358/pers.78.1.75
    [20]
    DE FRANCHIS C, MEINHARDT-LLOPIS E, MICHEL J, et al. An automatic and modular stereo pipeline for push-broom images[J]. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2014, 2(3): 49-56. DOI: 10.5194/isprsannals-ii-3-49-2014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (131) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return