GNSS World of China
Citation: | CAI Xiangyuan, CHEN Xiaotong, LI Ronghao, WEI Jiangnan, LI Shuai, ZHAO Hongying. Improved algorithm for tree height extraction based on sparse and dense image matching with epipolar constraints[J]. GNSS World of China, 2024, 49(3): 87-93. doi: 10.12265/j.gnss.2023221 |
[1] |
FILIPPELLI S K, LEFSKY M A, ROCCA M E. Compa-rison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure[J]. Remote sen-sing of environment, 2019(224):154-166. DOI: 10.1016/j.rse.2019.01.029
|
[2] |
PULITI C S. Structure from motion photogrammetry in forestry: a review[J]. Current forestry reports, 2019, 5(3): 155-168. DOI: 10.1007/s40725-019-00094-3
|
[3] |
SWAYZE N C, TINKHAM W T, VOGELER J C, et al. Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density[J]. Remote sensing of environment:an interdisciplinary journal, 2021, 263(5): 112540. DOI: 10.1016/j.rse.2021.112540
|
[4] |
SCHÖNBERGER J L, FRAHM J M. Structure-from-mot-ion revisited[C]//The IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4104-4113. DOI: 10.1109/cvpr.2016.445
|
[5] |
SCHÖNBERGER J L, ZHENG E, FRAHM J M, et al. Pixelwise View Selection for Unstructured Multi-view Stereo[C]//Computer Vision–ECCV 2016: 14th European Conference, 2016: 501-518. DOI: 10.1007/978-3-319-46487-9_31
|
[6] |
MOULON P, MONASSE P, PERROT R, et al. Openmvg: open multiple view geometry[C]//Reproducible Research in Pattern Recognition: First International Workshop, 2017: 60-74. DOI: 10.1007/978-3-319-56414-2_5
|
[7] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110. DOI: 10.1023/b:visi.0000029664.99615.94
|
[8] |
徐锦乐, 潘树国, 高旺, 等. 基于惯性先验校正图像灰度的VIO前端改良方法[J]. 全球定位系统, 2023, 48(3): 102-109. DOI: 10.12265/j.gnss.2023067
|
[9] |
DETONE D, MALISIEWICZ T, RABINOVICH A. Sup-erpoint: Self-supervised interest point detection and descri-ption[C]//The IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 224-236. DOI: 10.1109/cvprw.2018.00060
|
[10] |
TYSZKIEWICZ M, FUA P, TRULLS E. DISK: learning local features with policy gradient[J]. Advances in neural information processing systems, 2020(33): 14254-14265. DOI: 10.48550/arXiv.2006.13566
|
[11] |
SUN J, SHEN Z, WANG Y, et al. LoFTR: detector-free local feature matching with transformers[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8922-8931. DOI: 10.1109/cvpr46437.2021.00881
|
[12] |
EDSTEDT J, ATHANASIADIS I, WADENBÄCK M, et al. DKM: dense kernelized feature matching for geometry estimation[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 17765-17775. DOI: 10.1109/cvpr52729.2023.01704
|
[13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attenti-on is all you need[J]. Advances in neural information processing systems, 2017(v1). DOI: 10.48550/arXiv.1706.03762
|
[14] |
SARLIN P E, DETONE D, MALISIEWICZ T, et al. Su-perglue: learning feature matching with graph neural net-works[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4938-4947. DOI: 10.1109/cvpr42600.2020.00499
|
[15] |
LINDENBERGER P, SARLIN P E, POLLEFEYS M. LightGlue: local feature matching at light speed[C]//TEEE/CVF International Conference on Computer Vision, 2023: 17581-17592. DOI: 10.1109/ICCV51070.2023.01616
|
[16] |
HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge university press, 2003.
|
[17] |
BARATH D, NOSKOVA J, IVASHECHKIN M, et al. MAGSAC++, a fast, reliable and accurate robust estimator[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1304-1312. DOI: 10.1109/cvpr42600.2020.00138
|
[18] |
ZHAO X, GUO Q, SU Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS journal of photogrammetry and remote sensing, 2016(117): 79-91. DOI: 10.1016/j.isprsjprs.2016.03.016
|
[19] |
LI W, GUO Q, JAKUBOWSKI M K, et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogrammetric engineering & remote sensing, 2012, 78(1): 75-84. DOI: 10.14358/pers.78.1.75
|
[20] |
DE FRANCHIS C, MEINHARDT-LLOPIS E, MICHEL J, et al. An automatic and modular stereo pipeline for push-broom images[J]. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2014, 2(3): 49-56. DOI: 10.5194/isprsannals-ii-3-49-2014
|