GNSS World of China

Volume 49 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LONG Liang, WANG Xiaopeng, LI Gang, WANG Jiang. Improved MixNet for indoor localization using CSI image fingerprints[J]. GNSS World of China, 2024, 49(3): 57-64. doi: 10.12265/j.gnss.2023198
Citation: LONG Liang, WANG Xiaopeng, LI Gang, WANG Jiang. Improved MixNet for indoor localization using CSI image fingerprints[J]. GNSS World of China, 2024, 49(3): 57-64. doi: 10.12265/j.gnss.2023198

Improved MixNet for indoor localization using CSI image fingerprints

doi: 10.12265/j.gnss.2023198
  • Received Date: 2023-10-16
    Available Online: 2024-04-25
  • To enhance the performance of indoor localization using channel state information (CSI) fingerprints, an CSI image-based indoor localization method based on the improved MixNet model is proposed. In the offline phase, the method involves selecting the three access points (APs) with the highest received signal strength indication (RSSI) at the reference point (RP), extracting their CSI data, and converting it into image. Subsequently, the improved MixNet model is employed to train on these images and save the model. The improved MixNet model introduces coordinate attention (CA) and residual connections. Specifically, it replaces the squeeze-and-excitation (SE) attention in MixNet-s with CA to enhance the network’s information representation capability and extract CSI image fingerprint features more accurately. Moreover, it incorporates residual connections, tailored to the characteristics of the MixNet-s model, to enhance the network’s representation capacity and prevent overfitting. Finally, the network depth is reduced to ensure that all network layers are adequately trained. During the online phase, CSI data from the target device is collected and converted into image, and then input into the pre-trained improved MixNet model (named MixNet-CA). The final device position is estimated using a weighted centroid algorithm based on the model's output probabilities. The proposed method is validated in an indoor environment and achieve an average positioning error of 0.362 0 m.

     

  • loading
  • [1]
    王志恒, 徐彦彦. 室内定位隐私保护综述[J]. 通信学报, 2023, 44(9): 188-204.
    [2]
    XU S H, CHEN R Z, GUO G Y, et al. Bluetooth, floor-plan, and microelectromechanical systems-assisted wide-area audio indoor localization system: apply to smartphones[J]. IEEE transactions on industrial electronics, 2021, 69(11): 11744-11754. DOI: 10.1109/TIE.2021.3111561
    [3]
    李玉柏, 孙迅. 基于迁移学习提高WiFi室内定位中信道状态信息指纹库的鲁棒性[J]. 电子与信息学报, 2023, 45(10): 3657-3666.
    [4]
    牟平, 凌铭, 胡锐. 基于改进AP选择的融合随机森林室内定位算法[J]. 全球定位系统, 2021, 46(5): 33-38.
    [5]
    杨小龙, 李欣玥, 周牧, 等. 基于多维模糊映射AP优化的WLAN室内定位方法[J]. 电子学报, 2022, 50(8): 1875-1884.
    [6]
    俞佳豪, 余敏. 一种基于智能手机四向RSS指纹的室内定位方法[J]. 全球定位系统, 2021, 46(5): 48-54.
    [7]
    赵增华, 童跃凡, 崔佳洋. 基于域自适应的Wi-Fi指纹设备无关室内定位模型[J]. 通信学报, 2022, 43(4): 143-153.
    [8]
    CHEN H, ZHANG Y F, LI W, et al. ConFi: Convolutional neural networks based indoor Wi-Fi localization using channel state information[J]. IEEE access, 2017(5): 18066-18074. DOI: 10.1109/ACCESS.2017.2749516
    [9]
    ZHU X Q, QU W Y, ZHOU X B, et al. Intelligent fingerprint-based localization scheme using CSI images for internet of things[J]. IEEE transactions on network science and engineering, 2022, 9(4): 2378-2391. DOI: 10.1109/TNSE.2022.3163358
    [10]
    WANG X Y, WANG X Y, MAO S W. Deep convolutional neural networks for indoor localization with CSI images[J]. IEEE transactions on network science and engineering, 2018, 7(1): 316-327. DOI: 10.1109/TNSE.2018.2871165
    [11]
    LI S H, ZENG X S, LI Y Z, et al. Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images[J]. China communications, 2019, 16(9): 250-260. DOI: 10.23919/JCC.2019.09.019
    [12]
    刘帅, 王旭东, 吴楠. 一种基于卷积神经网络的CSI指纹室内定位方法[J]. 工程科学学报, 2021, 43(11): 1512-1521.
    [13]
    ZHANG F, WANG G C. Multi-branch selection fusion fine-grained classification algorithm based on coordinate attention localization[C]//2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), 2022: 105-111. DOI: 10.1109/ICTAI56018.2022.00024
    [14]
    王子辰, 陈晓艳, 王倩, 等. 基于残差自注意力连接的深度电学层析成像方法[J]. 仪器仪表学报, 2023, 44(5): 288-301.
    [15]
    TAN M X, LE Q V. Mixconv: mixed depthwise convolutional kernels[J]. arXiv preprint, 2019: 1-11. DOI: 10.48550/arXiv.1907.09595
    [16]
    CHENG S L, WANG L J, DU A Y. Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification[J]. Scientific reports, 2021, 11(1): 17408. DOI: 10.1038/s41598-021-97029-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (181) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return