GNSS World of China

Volume 49 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
JIN Fuming, DUAN Yi, LIU Zhihui, ZHANG Peng, LUAN Junqing. Application of BeiDou in tower pole settlement monitoring system[J]. GNSS World of China, 2024, 49(1): 54-59. doi: 10.12265/j.gnss.2023185
Citation: JIN Fuming, DUAN Yi, LIU Zhihui, ZHANG Peng, LUAN Junqing. Application of BeiDou in tower pole settlement monitoring system[J]. GNSS World of China, 2024, 49(1): 54-59. doi: 10.12265/j.gnss.2023185

Application of BeiDou in tower pole settlement monitoring system

doi: 10.12265/j.gnss.2023185
  • Received Date: 2023-09-20
  • Accepted Date: 2023-09-20
  • Available Online: 2024-01-18
  • This article introduces a monitoring system for transmission line steel pipe rod settlement monitoring system. The system relies on core technologies in the field of secure IoT, such as single-tower target disaster prediction and overall risk prediction of towers in the region, to create a secure IoT support platform for the subsidence of steel pipe towers in power transmission lines, providing overall solutions and system services throughout the life cycle. The system is based on the BeiDou Satellite Navigation System (BDS) and tilt monitoring and warning technology, with the output of the BDS’s raw data, including carrier phase observation data, ephemeris data, etc., as the core. The data is transmitted to the control center via 4G wireless network. The control center calculates the three-dimensional coordinates of each monitoring point in real-time through monitoring software, and then forms real-time differential data under different monitoring systems or environments according to the comparative analysis of real-time displacement data. Finally, the deformation of the subsidence area of the power tower is corrected according to the differential data and detailed data. This system can effectively prevent various accidents caused by tower inclination and improve the safety operation level of the power grid.

     

  • loading
  • [1]
    刘亚涛. 输变电工程送电线路最优路径选择研究[D]. 北京: 华北电力大学, 2014.
    [2]
    马瑞莉, 金樱, 卢琳, 等. 北斗系统在LNG接收站沉降监测的应用探讨[J]. 煤气与热力, 2020, 40(9): 4-7,21,45.
    [3]
    王振成. 设备管理故障诊断与维修[M]. 重庆:重庆大学出版社, 2020.
    [4]
    强小俊. 北斗定位技术在高速铁路沉降变形监测中的应用[J]. 铁道建筑, 2020, 60(7): 81-84.
    [5]
    吕鑫. 基于超声波的风电塔筒焊缝检测方法研究[D]包头: 内蒙古科技大学, 2022.
    [6]
    姜卫平. GNSS基准站网数据处理方法与应用[M]. 武汉:武汉大学出版社, 2017.
    [7]
    吕超迪, 李昕荷. 基于高精度北斗定位的地质沉降监测分析[J]. 河南建材, 2018(2): 54-55. DOI: 10.3969/j.issn.1008-9772.2018.02.029
    [8]
    强同波, 胡从川, 王谦, 等. 基于高精度北斗定位的风电基础沉降[J]. 现代电子技术, 2017, 40(23): 182-186.
    [9]
    王亚东. 基于磁致伸缩的钢绞线超声导波无损检测研究[D]. 杭州: 浙江大学, 2014.
    [10]
    潘军道, 蔡浩原, 刘振耀, 等. 基于BDS的毫米级基坑围墙位移监测及告警系统[J]. 全球定位系统, 2022, 47(2): 104-109.
    [11]
    段亚龙. 基于高精度北斗定位的地质沉降监测技术研究[J]. 黑龙江科技信息, 2015(21): 62.
    [12]
    王利, 张勤, 范丽红, 等. 北斗/GPS融合静态相对定位用于高精度地面沉降监测的试验与结果分析[J]. 工程地质学报, 2015, 23(1): 119-125.
    [13]
    吴焕琅. 基于高精度北斗定位的地质沉降监测[J]. 单片机与嵌入式系统应用, 2013, 13(12): 78-81.
    [14]
    刘天恒, 陈明剑, 张树为, 等. 北斗地基增强系统数据通信综述[J]. 全球定位系统, 2017, 42(1): 65-69,73.
    [15]
    温珍灵. 基于CGCS2000的高斯投影面积变形研究[D]. 贵阳: 贵州师范大学, 2016.
    [16]
    刘晓宏, 成云朋, 荀思超, 等. 基于北斗载波相位动态实时差分的高压输电塔架沉降位移测量方法[J]. 电子设计工程, 2021, 29(22): 93-96,101.
    [17]
    朱琳. GNSS时间监测与性能评估方法研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2022.
    [18]
    杨凡, 李广云, 王力. 三维坐标转换方法研究[J]. 测绘通报, 2010(6): 5-7,15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (324) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return