GNSS World of China

Volume 49 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LU Dan, GAO Penghua. Joint neural network and diagonal loading-based GNSS outage positioning algorithm[J]. GNSS World of China, 2024, 49(1): 82-88. doi: 10.12265/j.gnss.2023176
Citation: LU Dan, GAO Penghua. Joint neural network and diagonal loading-based GNSS outage positioning algorithm[J]. GNSS World of China, 2024, 49(1): 82-88. doi: 10.12265/j.gnss.2023176

Joint neural network and diagonal loading-based GNSS outage positioning algorithm

doi: 10.12265/j.gnss.2023176
  • Received Date: 2023-09-08
  • Accepted Date: 2024-01-02
  • Available Online: 2024-02-06
  • The GNSS/INS integrated navigation system can provide long-term, high-precision navigation information for mobile carriers. However, in adverse environments where filter measurement vectors cannot be obtained, it leads to rapid divergence in navigation positioning results. To address this issue, an increasing number of researchers are employing artificial neural networks to directly fuse information in the integrated navigation system. However, the inherent characteristics of the inertial navigation system (INS) result in errors in previously trained network models, and inertial navigation errors continue to accumulate during interruption periods. Therefore, an intelligent positioning algorithm for GNSS interruptions is proposed. This algorithm utilizes backpropagation (BP) neural networks to train filter measurement vectors and then updates the Kalman filter (KF) by incorporating diagonal-loaded reconstructed measurement noise covariance matrices. This approach reduces the impact of neural network training errors on the integrated navigation algorithm, enabling the navigation system to maintain relatively reliable navigation performance even during prolonged GNSS signal interruptions.

     

  • loading
  • [1]
    秦永元. 惯性导航[M]. 北京: 科学出版社, 2006.
    [2]
    LEICK A, PAPOPORT L, TATARNIKOV D. GNSS Positioning Approaches [M]. USA: John Wiley & Sons, Inc, 2015.
    [3]
    BATUWANGALA E, RAMASAMY S, BOGODA L, et al. An interoperability assessment model for CNS/ATM systems[C]//The 38th Australasian Transport Research Forum, Melbourne, Australia, 2016: 01627442.
    [4]
    ISMAIL M, ABDELKAWY E. A hybrid error modeling for MEMS IMU in integrated GPS/INS navigation system[J]. The journal of Global Positioning Systems, 2018, 16(1): 6. DOI: 10.1186/s41445-018-0016-5
    [5]
    ABDEL KAREEM JARADAT M, ABDEL-HAFEZ M F. Non-linear autoregressive delay-dependent INS/GPS navigation system using neural networks[J]. IEEE sensors journal, 2017, 17(4): 1105-1115. DOI: 10.1109/JSEN.2016.2642040
    [6]
    AL BITAR N, GAVRILOV A. A new method for compensating the errors of integrated navigation systems using artificial neural networks[J]. Measurement, 2021, 168(1): 108391.
    [7]
    关翔中, 蔡晨晓, 翟文华, 等. 基于神经网络补偿的室内无人机组合导航系统[J]. 航空学报, 2020, 41(S1): 723790.
    [8]
    王超, 周军, 黄浩乾, 等. BP神经网络辅助的SINS/GPS组合导航姿态误差补偿方法研究[J]. 电子器件, 2021, 44(4): 987-993.
    [9]
    方伟, 江金光, 谢东鹏. 基于MLP神经网络改进组合导航算法[J]. 计算机工程与设计, 2021, 42(1): 65-69.
    [10]
    CHEN L, FANG J C. A hybrid prediction method for bridging GPS outages in high-precision POS application[J]. IEEE transactions on instrumentation and measurement, 2014, 63(6): 1656-1665. DOI: 10.1109/TIM.2013.2292277
    [11]
    白相文, 杨建华, 杨志强. 神经网络辅助的组合导航算法研究[J]. 导航定位学报, 2020, 8(1): 93-98. DOI: 10.3969/j.issn.2095-4999.2020.01.017
    [12]
    ABDOLKARIMI E S, ABAEI G, MOSAVI M R. A wavelet-extreme learning machine for low-cost INS/GPS navigation system in high-speed applications[J]. GPS solutions, 2018, 22(1): 1-13. DOI: 10.1007/s10291-017-0682-x
    [13]
    YUE S, CONG L, QIN H L, et al. A robust fusion methodology for MEMS-based land vehicle navigation in GNSS-challenged environments[J]. IEEE access, 2020, 8: 44087-44099. DOI: 10.1109/ACCESS.2020.2977474
    [14]
    徐博, 李盛新, 王连钊, 等. 一种基于自适应神经模糊推理系统的多AUV协同定位方法[J]. 中国惯性技术学报, 2019, 27(4): 440-447.
    [15]
    DAI H F, BIAN H W, WANG R Y, et al. An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network[J]. Defence technology, 2020, 16(2): 334-340. DOI: 10.1016/j.dt.2019.08.011
    [16]
    WU F, LUO H Y, JIA Hongwei, et al. Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation[J]. IEEE transactions on instrumentation and measurement, 2021, 70(1): 1-13.
    [17]
    WANG G Q, HAN Y, CHEN J, et al. A GNSS/INS integrated navigation algorithm based on Kalman filter[J]. IFAC-PapersOnLine, 2018, 51(17): 232-237. DOI: 10.1016/j.ifacol.2018.08.151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (197) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return