GNSS World of China

Volume 49 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
REN Yuanrui, CHEN Pengdi, GAO Xiaolong. Building extraction based on advanced attention gate U-Net[J]. GNSS World of China, 2024, 49(2): 43-53. doi: 10.12265/j.gnss.2023175
Citation: REN Yuanrui, CHEN Pengdi, GAO Xiaolong. Building extraction based on advanced attention gate U-Net[J]. GNSS World of China, 2024, 49(2): 43-53. doi: 10.12265/j.gnss.2023175

Building extraction based on advanced attention gate U-Net

doi: 10.12265/j.gnss.2023175
  • Received Date: 2023-09-06
  • Accepted Date: 2023-09-06
  • Available Online: 2024-03-26
  • To facilitate the problems of low accuracy, fuzzy boundary, and difficulty in identifying small targets in building extraction using deep learning semantic segmentation networks, we propose an advanced attention gate U-Net (AA_U-Net) to improve the effect of building extraction. This network improves the structure of classic U-Net, using VGG16 as the backbone feature extraction network, attention-gated module participating in skip connection, and bilinear interpolation instead of deconvolution for upsampling. In the experiment, we use the Wuhan University building dataset (WHD) to compare the extraction effect of the proposed network and some classical semantic segmentation networks and explore the influence of each module of the network improvement on the extraction. The results show that the total accuracy, intersection of union, precision, recall rate, and F1 score of the network are 98.78%, 89.71%, 93.30%, 95.89%, and 94.58%, respectively. All evaluation indexes are better than the classical semantic segmentation network, and the improved modules can effectively improve the extraction accuracy. The problem of unclear outlines of buildings and fragmentation of small target buildings was improved, too. It can be used to accurately extract building information from high-resolution remote sensing images, which has guiding significance for urban planning, land use, production, life, and military reconnaissance.

     

  • loading
  • [1]
    李锋, 刘旭升, 胡聃, 等. 城市可持续发展评价方法及其应用[J]. 生态学报, 2007, 27(11): 4793-4802.
    [2]
    ATIK S O, IPBUKER C. Building extraction in VHR remote sensing imagery through deep learning[J]. Fresen environ bull, 2022, 31: 8468-8473.
    [3]
    SHALONI, DIXIT M, AGARWAL S, et al. Building extraction from remote sensing images: a survey[C]//The 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), 2020996-971. DOI: 10.1109/ICACCCN51052.2020.9362894
    [4]
    高妙仙, 吴新辉. 高空间分辨率遥感影像建筑物自动提取方法综述[J]. 测绘与空间地理信息, 2023, 46(3): 32-34.
    [5]
    李文国, 黄亮, 左小清, 等. 一种结合语义分割模型和图割的街景影像变化检测方法[J]. 全球定位系统, 2021, 46(1): 98-104.
    [6]
    SHI X, HUANG H, PU C Y, et al. CSA-UNet: channel-spatial attention-based encoder–decoder network for rural blue-roofed building extraction from UAV imagery[J]. IEEE geoscience and remote sensing letters, 2022(19): 1-5. DOI: 10.1109/LGRS.2022.3197319
    [7]
    张忠豪. 基于深度学习的多场景下建筑物提取研究 [D]. 贵阳: 贵州大学, 2022.
    [8]
    JÓŹWIK A, SERPICO S, ROLI F. A parallel network of modified 1-NN and k-NN classifiers–application to remote-sensing image classification[J]. Pattern recognition letters, 1998, 19(1): 57-62. DOI: 10.1016/S0167-8655(97)00155-4
    [9]
    PAL M, MATHER P M. Support vector machines for classification in remote sensing[J]. International journal of remote sensing, 2005, 26(5): 1007-1011. DOI: 10.1080/01431160512331314083
    [10]
    PAL M. Random forest classifier for remote sensing classification[J]. International journal of remote sensing, 2005, 26(1): 217-222. DOI: 10.1080/01431160412331269698
    [11]
    XU S J, DENG B W, MENG Y B, et al. ReA-Net: a multiscale region attention network with neighborhood consistency supervision for building extraction from remote sensing image[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2022(15): 9033-9047. DOI: 10.1109/JSTARS.2022.3204576
    [12]
    WEI S Q, ZHANG T, JI S P, et al. BuildMapper: a fully learnable framework for vectorized building contour extraction[J]. ISPRS journal of photogrammetry and remote sensing, 2023(197): 87-104. DOI: 10.48550/arXiv.2211.03373
    [13]
    ZHOU Y G, CHEN Z L, WANG B J, et al. BOMSC-Net: boundary optimization and multi-scale context awareness based building extraction from high-resolution remote sensing imagery[J]. IEEE transactions on geoscience and remote sensing, 2022(60): 1-17. DOI: 10.1109/TGRS.2022.3152575
    [14]
    GUO Y M, LIU Y, GEORGIOU T, et al. A review of semantic segmentation using deep neural networks[J]. International journal of multimedia information retrieval, 2018(7): 87-93. DOI: 10.1007/s13735-017-0141-z
    [15]
    于坤, 王贺封, 焦月正, 等. 基于语义分割的遥感影像建筑物提取[J]. 测绘与空间地理信息, 2021, 44(10): 50-54.
    [16]
    LONG J, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 3431-3440. DOI: 10.1109/CVPR.2015.7298965
    [17]
    RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28
    [18]
    BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615
    [19]
    CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [J]. arXiv, 2017: 170605587. DOI: 10.48550/arXiv.1706.05587
    [20]
    ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6130-6239. DOI: 10.1109/CVPR.2017.660
    [21]
    ZHENG H H, GONG M G, LIU T F, et al. HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images[J]. Pattern recognition, 2022(129): 108717. DOI: 10.1016/j.patcog.2022.108717
    [22]
    CUI M T, LI K, CHEN J Y, et al. CM-Unet: A novel remote sensing image segmentation method based on improved U-Net[J]. IEEE access, 2023(11): 56994-57005. DOI: 10.1109/ACCESS.2023.3282778
    [23]
    WANG H Y, MIAO F. Building extraction from remote sensing images using deep residual U-Net[J]. European journal of remote sensing, 2022, 55(1): 71-85. DOI: 10.1080/22797254.2021.2018944
    [24]
    YAN X, SHEN L, WANG J C, et al. PANet: Pixel-wise affinity network for weakly supervised building extraction from high-resolution remote sensing images[J]. IEEE geoscience and remote sensing letters, 2022(19): 1-5. DOI: 10.1109/LGRS.2022.3205309
    [25]
    陈雪娇, 田青林, 伊丕源. 基于深度学习的高分辨率遥感影像建筑物提取[J]. 世界核地质科学, 2023, 40(1): 81-88.
    [26]
    王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
    [27]
    OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: learning where to look for the pancreas[J]. arXiv, 2018. DOI: 10.48550/arXiv.1804.03999
    [28]
    赵元昊, 赵莹莹, 刘东升, 等. 遥感影像建筑物提取多尺度特征深度学习网络[J]. 航天返回与遥感, 2022, 43(4): 25-35.
    [29]
    宋佳, 徐慧窈, 高少华, 等. 轻量化卷积神经网络遥感影像建筑物提取模型[J]. 遥感技术与应用, 2023, 38(1): 190-199.
    [30]
    DU X T, ZHENG Z, XIAO G P, et al. DeepSIM: Deep semantic information-based automatic mandelbug classification[J]. IEEE transactions on reliability, 2021, 71(4): 1540-1554. DOI: 10.1109/TR.2021.3110096
    [31]
    JI S P, WEI S Q, LU M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE transactions on geoscience and remote sensing, 2018, 57(1): 574-586. DOI: 10.1109/TGRS.2018.2858817
    [32]
    YUAN J Y. Learning building extraction in aerial scenes with convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(11): 2793-2798. DOI: 10.1109/TPAMI.2017.2750680
    [33]
    WAHYUNI I, WANG W-J, LIANG D, et al. Rice Semantic Segmentation Using Unet-VGG16: A Case Study in Yunlin, Taiwan[C]//International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2021. DOI: 10.1109/ISPACS51563.2021.9651038
    [34]
    GHOSH S, CHAKI A, SANTOSH K. Improved U-Net architecture with VGG-16 for brain tumor segmentation[J]. Physical and engineering sciences in medicine, 2021, 44(3): 703-712. DOI: 10.1007/s13246-021-01019-w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (134) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return