GNSS World of China

Volume 48 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
SANG Wengang, LOU Guangzhen, ZHANG Xingguo, TIAN Maorong, ZHANG Guowei. Ionospheric disturbance monitoring and GNSS positioning performance analysis during geomagnetic storms[J]. GNSS World of China, 2023, 48(5): 71-78. doi: 10.12265/j.gnss.2023127
Citation: SANG Wengang, LOU Guangzhen, ZHANG Xingguo, TIAN Maorong, ZHANG Guowei. Ionospheric disturbance monitoring and GNSS positioning performance analysis during geomagnetic storms[J]. GNSS World of China, 2023, 48(5): 71-78. doi: 10.12265/j.gnss.2023127

Ionospheric disturbance monitoring and GNSS positioning performance analysis during geomagnetic storms

doi: 10.12265/j.gnss.2023127
  • Received Date: 2023-06-28
    Available Online: 2023-10-18
  • To analyze the disturbance patterns in the ionosphere and the changes in GPS positioning performance during magnetic storms, based on the IGS (International GNSS Service) global observation data and the GIM (Global Ionospheric Map), we conducted an analysis of the abnormal variation of total electron content (TEC) in the Northern Hemisphere during the geomagnetic storm event on August 26, 2018, as well as the GPS positioning performance. The results show that the TEC anomalies in the Northern Hemisphere exhibit latitude differences, with faster responses in higher latitude regions and larger variations in lower latitude regions, reaching up to 12 TECU (total electron content unit). During the magnetic storm, significant cycle slips were observed in the higher latitude regions, with a maximum decrease of 61.84% compared to magnetically quiet days. The data integrity of all stations decreased during the storm, with higher latitude regions experiencing a faster and more severe decline, reaching 38.65%. The decrease in data integrity of all stations occurred during the recovery phase of the storm. The data quality is consistent with the pattern of TEC anomalies. Analyzing the results of GPS dual-frequency dynamic precise point positioning (PPP), it was found that the positioning errors at higher latitude stations during the magnetic storm significantly increased, with horizontal and vertical root mean square errors reaching approximately 0.7 m and 1.8 m, respectively.

     

  • loading
  • [1]
    GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm?[J]. Journal of geophysical research, 1994(99): 5771-5792. DOI: 10.1029/93JA02867
    [2]
    SZUSZCZEWICZ E P, LESTER M, WILKINSON P, et al. A comparative study of global ionospheric responses to intense magnetic storm conditions[J]. Journal of geophysical research atmospheres, 1998, 103(A6): 11665-11684. DOI: 10.1029/97JA01660
    [3]
    姜阳厚, 刘晨, 周鸿芸. 太阳活动峰年北美中纬电离层分层结构变化[J]. 地理空间信息, 2022, 20(11): 75-80. DOI: 10.3969/j.issn.1672-4623.2022.11.017
    [4]
    WIELGOSZ P, KASHANI I, GREJNER-BRZEZINSKA D. Analysis of long-range network RTK during a severe ionospheric storm[J]. Journal of geodesy, 2005(79): 524-531. DOI: 10.1007/s00190-005-0003-y
    [5]
    JACOBSEN K S, SCHAFER S. Observed effects of a geomagnetic storm on an RTK positioning network at high latitudes[J]. Journal of space weather and space climate, 2012 2(2): A260000. DOI: 10.1051/swsc/2012013
    [6]
    JACOBSEN K S, ANDALSVIK Y L. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway[J]. Journal of space weather space clim. 2016(6): A9. DOI: 10.1051/swsc/2016004
    [7]
    ZHANG D H, MAN F, ZUO X, et al. The seasonal dependence of cycle slip occurrence of GPS data over China low latitude region[J]. Science in China(series E: technological sciences), 2007, 50(4): 422-429. DOI: 10.1007/s11431-007-0059-4
    [8]
    CHENG N, SONG S L, LI W. Multi-scale ionospheric anomalies monitoring and spatio-temporal analysis during intense storm[J]. Atmosphere 2021, 12(2): 215. DOI: 10.3390/atmos12020215
    [9]
    全林, 薛军琛, 胡小工, 等. 中国区域GPS单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3047. DOI: 10.6038/cjg2021P0331
    [10]
    王格, 王宁波, 李子申, 等. 地磁暴期间北半球高纬度地区电离层变化特征及对精密定位的影响[J]. 空间科学学报, 2021, 41(2): 261-272. DOI: 10.11728/cjss2021.02.261
    [11]
    LUO X M, GUO S F, LOU Y D, et al. Assessing the performance of gps precise point positioning under different geomagnetic storm conditions during solar cycle 24[J]. Sensors, 18(6): 1784. DOI: 10.3390/s18061784
    [12]
    NIE W F, ADRIA R G, WANG Y, et al. On the global kinematic positioning variations during the september 2017 solar flare events[J]. Journal of geophysical research: space physics, 2022, 127(8): 1-21. DOI: 10.1029/2021JA030245
    [13]
    欧明, 吴家燕, 陈龙江, 等. 一次中等磁暴期间全球电离层TEC及ROTI指数变化分析[J]. 空间科学学报, 2021, 41(6): 887-897. DOI: 10.11728/cjss2021.06.887
    [14]
    滕月昊, 贾小林, 雷盼荣, 等. iGMAS多品牌监测接收机数据质量分析[J]. 全球定位系统, 2022, 47(1): 59-67. DOI: 10.12265/j.gnss.2021083104
    [15]
    CHERNIAK I, KRANKOWSKI A, ZAKHARENKOVA I. Observation of the ionospheric irregularities over the northern hemisphere: methodology and service[J]. Radio science, 2014, 49(8): 653-662. DOI: 10.1002/2014RS005433
    [16]
    王格. 北半球高纬度地区电离层闪烁特性研究[D]. 北京: 中国地质大学, 2019.
    [17]
    朱军桃, 刘玉升, 林知宇, 等. 2018-08-25~29期间全球电离层TEC对地磁暴的响应分析[J]. 大地测量与地球动力学, 2022, 42(7): 661-668. DOI: 10.14075/j.jgg.2022.07.001
    [18]
    聂文锋, 徐天河, 杨玉国, 等. 一种自适应的卫星导航载波观测值周跳探测阈值确定方法: CN202210401196. X[P]. 2020-06-28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (496) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return