GNSS World of China
Citation: | SONG Binghong. Accuracy evaluation of ionospheric prediction based on BP neural network model[J]. GNSS World of China, 2023, 48(5): 79-82, 102. doi: 10.12265/j.gnss.2023099 |
[1] |
姚宜斌, 高鑫. GNSS电离层监测研究进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1728-1739.
|
[2] |
袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378.
|
[3] |
杨玲, 周春元, 苏小宁, 等. 附加IRI模型约束的全球电离层建模及定位精度分析[J]. 同济大学学报(自然科学版), 2021, 49(11): 1606-1613. DOI: 10.11908/j.issn.0253-374x.21007
|
[4] |
褚睿韬, 姚宜斌, 孔建. 基于电离层线状变化特征的电离层建模方法[J]. 测绘地理信息, 2022, 47(5): 17-21.
|
[5] |
郑敦勇, 姚宜斌, 聂文锋, 等. 基于机器学习集成算法的电离层层析算法迭代初值精化[J]. 地球物理学报, 2022, 65(8): 2796-2812.
|
[6] |
袁建刚, 李旺, 刘胜男. 基于深度学习构建的全球电离层NmF2模型[J]. 测绘科学技术学报, 2020, 37(1): 15-20.
|
[7] |
徐福隆. 基于深度学习的高纬度电离层闪烁预测[D]. 徐州: 中国矿业大学, 2020.
|
[8] |
廖文梯, 陈洲, 赵瑜馨, 等. 利用混合模型LSTM-DNN进行全球电离层TEC map的中短期预报[J]. 航天器环境工程, 2021, 38(3): 281-286.
|
[9] |
马国辉, 罗云琪. 基于深度学习GRU模型的电离层总电子含量预报[J]. 测绘与空间地理信息, 2020, 43(S1): 212-215.
|
[10] |
吉长东, 王强, 王贵朋, 等. 深度学习LSTM模型的电离层总电子含量预报[J]. 导航定位学报, 2019, 7(3): 76-81.
|
[11] |
史坤朋, 郭金运, 刘智敏, 等. 2016-12-25智利M_W7.6地震震前电离层TEC异常探测[J]. 大地测量与地球动力学, 2018, 38(9): 979-985.
|
[12] |
袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57. DOI: 10.11728/cjss2018.01.048
|