GNSS World of China
Citation: | ZHANG Junhao, PAN Shuguo, GAO Wang, GUO Peng, WANG Ping, HU Peng. Path planning of unmanned vehicles in narrow and long space based on improved RRT algorithm[J]. GNSS World of China, 2023, 48(4): 81-90. doi: 10.12265/j.gnss.2023090 |
[1] |
王鹤静, 王丽娜. 机器人路径规划算法综述[J/OL]. 桂林理工大学学报, 2023, 43(1): 137-147.
|
[2] |
KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894. DOI: 10.1109/ICRA.2014.6907642
|
[3] |
彭君. 改进RRT算法在移动机器人路径规划中的应用研究[D]. 南京: 南京邮电大学, 2022.
|
[4] |
ZUCKER M, KUFFNER J, BRANICKY M S. Multipartite RRTs for rapidreplanning in dynamic environments[C]//IEEE International Conference on Robotics and Automation, 2007: 1603-1609. DOI: 10.1109/ROBOT.2007.363553
|
[5] |
OTTE M W, FRAZZOLI E. RRTX: Asymptotically optimal single-querysampling-based motion planning with quick replanning[J]. The international journal of robotics research, 2016, 35(7): 797-822. DOI: 10.1177/0278364915594679
|
[6] |
YANG Y, ZHANG L, GUO R H, et al. Path planning of mobile robot based on improved RRT algorithm[C]//Chinese Automation Congress (CAC), 2019: 4741-4746. DOI: 10.1109/CAC48633.2019.8996415
|
[7] |
QI J, YANG H, SUN H X. MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment[J]. IEEE transactions on industrial electronics, 2020, 68(8): 7244-7251. DOI: 10.1109/TIE.2020.2998740
|
[8] |
WANG X Y, LI X J, GUAN Y, et al. Bidirectional potential guided RRT* for motion planning[J]. IEEE access, 2019(7): 95046-95057. DOI: 10.1109/ACCESS.2019.2928846
|
[9] |
WU Z P, MENG Z, ZHAO W L, et al. Fast-RRT: a RRT-based optimal path finding method[J]. Applied sciences, 2021, 11(24): 11777. DOI: 10.3390/app112411777
|
[10] |
WANG J K, LI B P, MENG M Q H. Kinematic constrained Bi-directional RRT with efficient branch pruning for robot path planning[J]. Expert systems with applications, 2021(170): 114541. DOI: 10.1016/j.eswa.2020.114541
|
[11] |
LI Y J, WEI W, GAO Y, et al. PQ-RRT*: an improved path planning algorithm for mobile robots[J]. Expert systems with applications, 2020(152): 113425. DOI: 10.1016/j.eswa.2020.113425
|
[12] |
YUAN C G, LIU G F, ZHANG W G, et al. An efficient RRT cache method in dynamic environments for path planning[J]. Robotics and autonomous systems, 2020(131): 103595. DOI: 10.1016/j.robot.2020.103595
|
[13] |
田小壮, 石辉, 刘家辛, 等. 复杂环境下无人机智能巡检轨迹规划方法研究[J]. 电子设计工程, 2021, 29(20): 77-81. DOI: 10.14022/j.issn1674-6236.2021.20.016
|
[14] |
董敏, 陈铁桩, 杨浩. 基于改进 RRT 算法的无人车路径规划仿真研究[J]. 计算机仿真, 2019, 36(11): 96-100.
|
[15] |
张兰勇, 韩宇. 基于改进的 RRT* 算法的 AUV 集群路径规划研究[J]. 中国舰船研究, 2023, 18(1): 43-51.
|
[16] |
李犇, 褚伟. 基于改进 RRT 与人工势场法的机器人路径规划[C]//中国生物医学工程学会血液疗法与工程分会第七届学术大会暨UBIO疗法专题研讨会, 2021.
|
[17] |
王海群, 王水满, 张怡, 等. 未知环境的移动机器人路径规划研究[J]. 机械设计与制造, 2021, 368(10): 233-235, 240. DOI: 10.19356/j.cnki.1001-3997.2021.10.052
|