GNSS World of China

Volume 48 Issue 4
Sep.  2023
Turn off MathJax
Article Contents
ZHANG Junhao, PAN Shuguo, GAO Wang, GUO Peng, WANG Ping, HU Peng. Path planning of unmanned vehicles in narrow and long space based on improved RRT algorithm[J]. GNSS World of China, 2023, 48(4): 81-90. doi: 10.12265/j.gnss.2023090
Citation: ZHANG Junhao, PAN Shuguo, GAO Wang, GUO Peng, WANG Ping, HU Peng. Path planning of unmanned vehicles in narrow and long space based on improved RRT algorithm[J]. GNSS World of China, 2023, 48(4): 81-90. doi: 10.12265/j.gnss.2023090

Path planning of unmanned vehicles in narrow and long space based on improved RRT algorithm

doi: 10.12265/j.gnss.2023090
  • Received Date: 2023-04-17
  • Accepted Date: 2023-04-17
  • Available Online: 2023-08-22
  • A path planning algorithm based on improved rapidly-exploring random trees (RRT) is proposed for the path planning system of unmanned vehicles in narrow and long space, which solves the problems of large randomness and lack of safety of the traditional RRT algorithm. The algorithm improves the traditional RRT algorithm by adding adaptive target probability sampling strategy and dynamic step size strategy. At the same time, considering the dynamics constraints of driverless vehicles in the actual situation, the algorithm adds vehicle collision constraints and path angle constraints, and proposes a random turning strategy within the restricted area to solve the problem that the angle constraints will lead to the multiplication of iterations, and a path with higher safety is finally obtained. The performance of the proposed algorithm is compared with existing algorithms by computer simulation. Compared with the traditional RRT algorithm guided by artificial potential field in narrow and long space, the iteration times, planning time and path length of the proposed algorithm are reduced by 33.09%, 6.44% and 0.06%, and the planning ability of the proposed algorithm is improved in both simple environment and dense obstacle environment. The proposed algorithm has higher planning efficiency and fewer iteration .

     

  • loading
  • [1]
    王鹤静, 王丽娜. 机器人路径规划算法综述[J/OL]. 桂林理工大学学报, 2023, 43(1): 137-147.
    [2]
    KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894. DOI: 10.1109/ICRA.2014.6907642
    [3]
    彭君. 改进RRT算法在移动机器人路径规划中的应用研究[D]. 南京: 南京邮电大学, 2022.
    [4]
    ZUCKER M, KUFFNER J, BRANICKY M S. Multipartite RRTs for rapidreplanning in dynamic environments[C]//IEEE International Conference on Robotics and Automation, 2007: 1603-1609. DOI: 10.1109/ROBOT.2007.363553
    [5]
    OTTE M W, FRAZZOLI E. RRTX: Asymptotically optimal single-querysampling-based motion planning with quick replanning[J]. The international journal of robotics research, 2016, 35(7): 797-822. DOI: 10.1177/0278364915594679
    [6]
    YANG Y, ZHANG L, GUO R H, et al. Path planning of mobile robot based on improved RRT algorithm[C]//Chinese Automation Congress (CAC), 2019: 4741-4746. DOI: 10.1109/CAC48633.2019.8996415
    [7]
    QI J, YANG H, SUN H X. MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment[J]. IEEE transactions on industrial electronics, 2020, 68(8): 7244-7251. DOI: 10.1109/TIE.2020.2998740
    [8]
    WANG X Y, LI X J, GUAN Y, et al. Bidirectional potential guided RRT* for motion planning[J]. IEEE access, 2019(7): 95046-95057. DOI: 10.1109/ACCESS.2019.2928846
    [9]
    WU Z P, MENG Z, ZHAO W L, et al. Fast-RRT: a RRT-based optimal path finding method[J]. Applied sciences, 2021, 11(24): 11777. DOI: 10.3390/app112411777
    [10]
    WANG J K, LI B P, MENG M Q H. Kinematic constrained Bi-directional RRT with efficient branch pruning for robot path planning[J]. Expert systems with applications, 2021(170): 114541. DOI: 10.1016/j.eswa.2020.114541
    [11]
    LI Y J, WEI W, GAO Y, et al. PQ-RRT*: an improved path planning algorithm for mobile robots[J]. Expert systems with applications, 2020(152): 113425. DOI: 10.1016/j.eswa.2020.113425
    [12]
    YUAN C G, LIU G F, ZHANG W G, et al. An efficient RRT cache method in dynamic environments for path planning[J]. Robotics and autonomous systems, 2020(131): 103595. DOI: 10.1016/j.robot.2020.103595
    [13]
    田小壮, 石辉, 刘家辛, 等. 复杂环境下无人机智能巡检轨迹规划方法研究[J]. 电子设计工程, 2021, 29(20): 77-81. DOI: 10.14022/j.issn1674-6236.2021.20.016
    [14]
    董敏, 陈铁桩, 杨浩. 基于改进 RRT 算法的无人车路径规划仿真研究[J]. 计算机仿真, 2019, 36(11): 96-100.
    [15]
    张兰勇, 韩宇. 基于改进的 RRT* 算法的 AUV 集群路径规划研究[J]. 中国舰船研究, 2023, 18(1): 43-51.
    [16]
    李犇, 褚伟. 基于改进 RRT 与人工势场法的机器人路径规划[C]//中国生物医学工程学会血液疗法与工程分会第七届学术大会暨UBIO疗法专题研讨会, 2021.
    [17]
    王海群, 王水满, 张怡, 等. 未知环境的移动机器人路径规划研究[J]. 机械设计与制造, 2021, 368(10): 233-235, 240. DOI: 10.19356/j.cnki.1001-3997.2021.10.052
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (257) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return