• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

ZHANG Junhao, PAN Shuguo, GAO Wang, GUO Peng, WANG Ping, HU Peng. Path planning of unmanned vehicles in narrow and long space based on improved RRT algorithm[J]. GNSS World of China, 2023, 48(4): 81-90. DOI: 10.12265/j.gnss.2023090
Citation: ZHANG Junhao, PAN Shuguo, GAO Wang, GUO Peng, WANG Ping, HU Peng. Path planning of unmanned vehicles in narrow and long space based on improved RRT algorithm[J]. GNSS World of China, 2023, 48(4): 81-90. DOI: 10.12265/j.gnss.2023090

Path planning of unmanned vehicles in narrow and long space based on improved RRT algorithm

More Information
  • Received Date: April 16, 2023
  • Accepted Date: April 16, 2023
  • Available Online: August 21, 2023
  • A path planning algorithm based on improved rapidly-exploring random trees (RRT) is proposed for the path planning system of unmanned vehicles in narrow and long space, which solves the problems of large randomness and lack of safety of the traditional RRT algorithm. The algorithm improves the traditional RRT algorithm by adding adaptive target probability sampling strategy and dynamic step size strategy. At the same time, considering the dynamics constraints of driverless vehicles in the actual situation, the algorithm adds vehicle collision constraints and path angle constraints, and proposes a random turning strategy within the restricted area to solve the problem that the angle constraints will lead to the multiplication of iterations, and a path with higher safety is finally obtained. The performance of the proposed algorithm is compared with existing algorithms by computer simulation. Compared with the traditional RRT algorithm guided by artificial potential field in narrow and long space, the iteration times, planning time and path length of the proposed algorithm are reduced by 33.09%, 6.44% and 0.06%, and the planning ability of the proposed algorithm is improved in both simple environment and dense obstacle environment. The proposed algorithm has higher planning efficiency and fewer iteration .
  • [1]
    王鹤静, 王丽娜. 机器人路径规划算法综述[J/OL]. 桂林理工大学学报, 2023, 43(1): 137-147.
    [2]
    KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894. DOI: 10.1109/ICRA.2014.6907642
    [3]
    彭君. 改进RRT算法在移动机器人路径规划中的应用研究[D]. 南京: 南京邮电大学, 2022.
    [4]
    ZUCKER M, KUFFNER J, BRANICKY M S. Multipartite RRTs for rapidreplanning in dynamic environments[C]//IEEE International Conference on Robotics and Automation, 2007: 1603-1609. DOI: 10.1109/ROBOT.2007.363553
    [5]
    OTTE M W, FRAZZOLI E. RRTX: Asymptotically optimal single-querysampling-based motion planning with quick replanning[J]. The international journal of robotics research, 2016, 35(7): 797-822. DOI: 10.1177/0278364915594679
    [6]
    YANG Y, ZHANG L, GUO R H, et al. Path planning of mobile robot based on improved RRT algorithm[C]//Chinese Automation Congress (CAC), 2019: 4741-4746. DOI: 10.1109/CAC48633.2019.8996415
    [7]
    QI J, YANG H, SUN H X. MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment[J]. IEEE transactions on industrial electronics, 2020, 68(8): 7244-7251. DOI: 10.1109/TIE.2020.2998740
    [8]
    WANG X Y, LI X J, GUAN Y, et al. Bidirectional potential guided RRT* for motion planning[J]. IEEE access, 2019(7): 95046-95057. DOI: 10.1109/ACCESS.2019.2928846
    [9]
    WU Z P, MENG Z, ZHAO W L, et al. Fast-RRT: a RRT-based optimal path finding method[J]. Applied sciences, 2021, 11(24): 11777. DOI: 10.3390/app112411777
    [10]
    WANG J K, LI B P, MENG M Q H. Kinematic constrained Bi-directional RRT with efficient branch pruning for robot path planning[J]. Expert systems with applications, 2021(170): 114541. DOI: 10.1016/j.eswa.2020.114541
    [11]
    LI Y J, WEI W, GAO Y, et al. PQ-RRT*: an improved path planning algorithm for mobile robots[J]. Expert systems with applications, 2020(152): 113425. DOI: 10.1016/j.eswa.2020.113425
    [12]
    YUAN C G, LIU G F, ZHANG W G, et al. An efficient RRT cache method in dynamic environments for path planning[J]. Robotics and autonomous systems, 2020(131): 103595. DOI: 10.1016/j.robot.2020.103595
    [13]
    田小壮, 石辉, 刘家辛, 等. 复杂环境下无人机智能巡检轨迹规划方法研究[J]. 电子设计工程, 2021, 29(20): 77-81. DOI: 10.14022/j.issn1674-6236.2021.20.016
    [14]
    董敏, 陈铁桩, 杨浩. 基于改进 RRT 算法的无人车路径规划仿真研究[J]. 计算机仿真, 2019, 36(11): 96-100.
    [15]
    张兰勇, 韩宇. 基于改进的 RRT* 算法的 AUV 集群路径规划研究[J]. 中国舰船研究, 2023, 18(1): 43-51.
    [16]
    李犇, 褚伟. 基于改进 RRT 与人工势场法的机器人路径规划[C]//中国生物医学工程学会血液疗法与工程分会第七届学术大会暨UBIO疗法专题研讨会, 2021.
    [17]
    王海群, 王水满, 张怡, 等. 未知环境的移动机器人路径规划研究[J]. 机械设计与制造, 2021, 368(10): 233-235, 240. DOI: 10.19356/j.cnki.1001-3997.2021.10.052
  • Cited by

    Periodical cited type(2)

    1. 王萍,潘树国,蔚保国,高旺,胡鹏. 基于RSS_GN RRT算法的狭长空间路径规划. 电子测量与仪器学报. 2024(01): 72-85 .
    2. 邵伟伟,王金龙,胡超. 融合滚动窗口与改进RRT算法的路径规划. 咸阳师范学院学报. 2024(04): 17-21 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (294) PDF downloads (36) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return